CITATION

Khandpur, R.. Printed Circuit Boards. US: McGraw-Hill Professional, 2005.

Printed Circuit Boards

Authors:

Published:  August 2005

eISBN: 9780071589253 0071589252 | ISBN: 9780071464208
  • Contents
  • Preface
  • 1. Basics of Printed Circuit Boards
  • 1.1 Connectivity in Electronic Equipment
  • 1.1.1 Advantages of Printed Circuit Boards
  • 1.2 Evolution of Printed Circuit Boards
  • 1.3 Components of a Printed Circuit Board
  • 1.4 Classification of Printed Circuit Boards
  • 1.4.1 Single-sided Printed Circuit Boards
  • 1.4.2 Double-sided Printed Circuit Boards
  • 1.4.3 Multi-layer Boards
  • 1.4.4 Rigid and Flexible Printed Circuit Boards
  • 1.5 Manufacturing of Basic Printed Circuit Boards
  • 1.5.1 Single-sided Boards
  • 1.5.2 Double-sided Plated Through-holes
  • 1.5.3 Multi-layer Boards
  • 1.5.4 Flexible Boards
  • 1.6 Challenges in Modern PCB Design and Manufacture
  • 1.7 Major Market Drivers for the PCB Industry
  • 1.8 PCBs with Embedded Components
  • 1.9 Standards on Printed Circuit Boards
  • 1.10 Useful Standards
  • 2. Electronic Components
  • 2.1 Basics of Electronic Components
  • 2.1.1 Active vs Passive Components
  • 2.1.2 Discrete vs Integrated Circuits
  • 2.1.3 Component Leads
  • 2.1.4 Polarity in Components
  • 2.1.5 Component Symbols
  • 2.2 Resistors
  • 2.2.1 Types of Resistors
  • 2.2.2 Packages
  • 2.2.3 Characteristics
  • 2.3 Variable Resistors or Potentiometers
  • 2.4 Light-dependent Resistors (LDRs)
  • 2.5 Thermistors
  • 2.6 Capacitors
  • 2.6.1 Types of Capacitors
  • 2.6.2 Packages
  • 2.6.3 Performance of Capacitors
  • 2.7 Variable Capacitors
  • 2.8 Inductors
  • 2.9 Diodes
  • 2.10 Special Types of Diodes
  • 2.10.1 Zener Diode
  • 2.10.2 Varactor Diode
  • 2.10.3 Varistor
  • 2.10.4 Light Emitting Diodes (LED)
  • 2.10.5 Photodiode
  • 2.10.6 Tunnel Diode (TD)
  • 2.11 Transistors
  • 2.11.1 Bipolar Transistors
  • 2.11.2 Power Transistors
  • 2.11.3 Darlington Transistors
  • 2.11.4 Field-effect Transistors
  • 2.11.5 Insulated Gate Bipolar Transistor (IGBT)
  • 2.11.6 Transistor Type Numbers
  • 2.12 Thyristors
  • 2.13 Integrated Circuits (ICs)
  • 2.14 Linear Integrated Circuits
  • 2.14.1 Operational Amplifiers (OP-AMP)
  • 2.14.2 Three-terminal Voltage Regulator
  • 2.15 Digital Integrated Circuits
  • 2.15.1 Logic Circuits
  • 2.16 Microprocessors
  • 2.17 Semiconductor Memories
  • 2.17.1 Random Access Memory
  • 2.17.2 Read Only Memory
  • 2.18 Microcontrollers
  • 2.19 Surface Mount Devices
  • 2.19.1 Surface Mount Devices
  • 2.19.2 Surface Mounting Semiconductor Packages
  • 2.19.3 Packaging of Passive Components as SMDs
  • 2.20 Heat Sinks
  • 2.21 Transformer
  • 2.22 Relays
  • 2.23 Connectors
  • 2.24 Useful Standards
  • 3. Layout Planning and Design
  • 3.1 Reading Drawings and Diagrams
  • 3.1.1 Block Diagram
  • 3.1.2 Schematic Diagram
  • 3.2 General PCB Design Considerations
  • 3.2.1 Important Design Elements
  • 3.2.2 Important Performance Parameters
  • 3.3 Mechanical Design Considerations
  • 3.3.1 Types of Boards
  • 3.3.2 Board Mounting Techniques
  • 3.3.3 Board Guiding and Retaining
  • 3.3.4 Input/Output Terminations
  • 3.3.5 Board Extraction
  • 3.3.6 Testing and Servicing
  • 3.3.7 Mechanical Stress
  • 3.3.8 Board Thickness
  • 3.3.9 Important Specifications and Standards
  • 3.4 Electrical Design Considerations
  • 3.4.1 Conductor Dimensions
  • 3.4.2 Resistance
  • 3.4.3 Capacitance Considerations
  • 3.4.4 Inductance of PCB Conductors
  • 3.4.5 High Electrical Stresses
  • 3.5 Conductor Patterns
  • 3.6 Component Placement Rules
  • 3.6.1 Conductor Width and Thickness
  • 3.6.2 Conductor Spacing
  • 3.6.3 Conductor Shapes
  • 3.6.4 Conductor Routing and Locations
  • 3.6.5 Supply and Ground Conductors
  • 3.7 Fabrication and Assembly Considerations
  • 3.8 Environmental Factors
  • 3.8.1 Thermal Considerations
  • 3.8.2 Contamination
  • 3.8.3 Shock and Vibration
  • 3.9 Cooling Requirements and Packaging Density
  • 3.9.1 Heat Sinks
  • 3.9.2 Packaging Density
  • 3.9.3 Package Style and Physical Attributes
  • 3.10 Layout Design
  • 3.10.1 Grid Systems
  • 3.10.2 Layout Scale
  • 3.10.3 Layout Sketch/Design
  • 3.10.4 Layout Considerations
  • 3.10.5 Materials and Aids
  • 3.10.6 Land Requirements
  • 3.10.7 Manual Layout Procedure
  • 3.10.8 Layout Methodology
  • 3.11 Layout Design Checklist
  • 3.11.1 General Considerations
  • 3.11.2 Electrical Considerations
  • 3.11.3 Mechanical Considerations
  • 3.12 Documentation
  • 3.12.1 Documentation File
  • 3.13 Useful Standards
  • 4. Design Considerations for Special Circuits
  • 4.1 Design Rules for Analog Circuits
  • 4.1.1 Component Placement
  • 4.1.2 Signal Conductors
  • 4.1.3 Supply and Ground Conductors
  • 4.1.4 General Rules for Design of Analog PCBs
  • 4.2 Design Rules for Digital Circuits
  • 4.2.1 Transmission Lines
  • 4.2.2 Problems in Design of PCBs for Digital Circuits
  • 4.3 Design Rules for High Frequency Circuits
  • 4.4 Design Rules for Fast Pulse Circuits
  • 4.4.1 Controlled Impedance Considerations
  • 4.5 Design Rules for PCBs for Microwave Circuits
  • 4.5.1 Basic Definitions
  • 4.5.2 Strip Line and Microstrip Line
  • 4.5.3 Transmission Lines as Passive Components
  • 4.5.4 General Design Considerations for Microwave Circuits
  • 4.6 Design Rules for Power Electronic Circuits
  • 4.6.1 Separating Power Circuits in High and Low Power Parts
  • 4.6.2 Base Material Thickness
  • 4.6.3 Copper Foil Thickness
  • 4.6.4 Conductor Width
  • 4.6.5 Resistive Drop of Voltage
  • 4.6.6 Thermal Considerations
  • 4.7 High-density Interconnection Structures
  • 4.7.1 Drivers for HDI
  • 4.7.2 Advantages of HDI
  • 4.7.3 Designing for HDI
  • 4.8 Electromagnetic Interference/Compatibility (EMI/EMC)
  • 4.9 Useful Standards
  • 5. Artwork Generation
  • 5.1 What is Artwork?
  • 5.2 Basic Approach to Manual Artwork
  • 5.2.1 Ink Drawing on White Card Board Sheets
  • 5.2.2 Black Taping on Transparent Base Foil
  • 5.2.3 Red and Blue Tape on Transparent Polyester Base Foil
  • 5.3 General Design Guidelines for Artwork Preparation
  • 5.3.1 Conductor Orientation
  • 5.3.2 Conductor Routing
  • 5.3.3 Conductor Spacing
  • 5.3.4 Hole Diameter and Solder Pad Diameter
  • 5.3.5 The Square Land/Pad
  • 5.4 Artwork Generation Guidelines
  • 5.4.1 No Conductor Zone
  • 5.4.2 Pad Centre Holes
  • 5.4.3 Conductor and Solder Pad Joints
  • 5.5 Film Master Preparation
  • 5.5.1 Photographic Film
  • 5.5.2 Exposure through Camera
  • 5.5.3 Dark Room
  • 5.5.4 Film Development
  • 5.6 Automated Artwork Generation
  • 5.7 Computer- Aided Design (CAD)
  • 5.7.1 System Requirements
  • 5.8 Basic CAD Operation
  • 5.8.1 Layout Procedure
  • 5.8.2 Library Manager
  • 5.8.3 Component Placement
  • 5.8.4 Conductor Routing
  • 5.8.5 Checking
  • 5.9 Design Automation
  • 5.9.1 How to Judge CAD Systems?
  • 5.10 Manual Versus Automation in PCB Design
  • 5.11 Photoplotter
  • 5.11.1 Vector Photoplotter
  • 5.11.2 Raster (Laser) Plotters
  • 5.11.3 Talking to Photoplotters
  • 5.12 Computer-Aided Manufacturing (CAM)
  • 5.13 Data Transfer Mechanisms
  • 5.14 PCB Design Checklist
  • 5.15 Useful Relevant Standards
  • 6. Copper Clad Laminates
  • 6.1 Anatomy of Laminates
  • 6.1.1 Fillers (Reinforcements)
  • 6.1.2 Resins
  • 6.1.3 Copper Foil
  • 6.2 Manufacture of Laminates
  • 6.2.1 Materials
  • 6.2.2 Process
  • 6.3 Properties of Laminates
  • 6.3.1 Electrical Properties
  • 6.3.2 Dielectric Strength
  • 6.3.3 Dielectric Constant
  • 6.3.4 Dissipation Factor
  • 6.3.5 Insulation Resistance
  • 6.3.6 Surface Resistivity
  • 6.3.7 Volume Resistivity
  • 6.3.8 Dielectric Breakdown
  • 6.4 Types of Laminates
  • 6.4.1 Phenolic Laminates
  • 6.4.2 Epoxy Laminates
  • 6.4.3 Glass Cloth Laminates
  • 6.4.4 Prepreg Material [B-Stage]
  • 6.4.5 PTFE (Polytetrafluoroethylene) Laminates
  • 6.4.6 Polyester Laminates (Mylar Lamination)
  • 6.4.7 Silicone Laminates
  • 6.4.8 Melamine Laminates
  • 6.4.9 Polyamide Laminates
  • 6.4.10 Teflon Laminates
  • 6.4.11 Mixed Dielectric Laminates
  • 6.5 Evaluation of Laminates
  • 6.5.1 Laminate Testing
  • 6.5.2 Surface and Appearance
  • 6.5.3 Water Absorption
  • 6.5.4 Punchability and Machinability
  • 6.5.5 Peel Strength
  • 6.5.6 Bond Strength
  • 6.5.7 Solder Resistance
  • 6.5.8 Warp and Twist
  • 6.5.9 Flexural Strength
  • 6.5.10 Flammability
  • 6.5.11 Glass Transition Temperature
  • 6.5.12 Dimensional Stability
  • 6.5.13 Copper Adhesion
  • 6.6 Useful Standards
  • 7. Image Transfer Techniques
  • 7.1 What is Image Transfer?
  • 7.2 Laminate Surface Preparation
  • 7.2.1 Manual Cleaning Process
  • 7.2.2 Mechanical Cleaning
  • 7.2.3 Test for Cleanliness
  • 7.3 Screen Printing
  • 7.3.1 Screen Frame
  • 7.3.2 Screen Cloth
  • 7.3.3 Screen Preparation
  • 7.3.4 Squeegees
  • 7.4 Pattern Transferring Techniques
  • 7.4.1 Screen Stencil Method
  • 7.4.2 Indirect Method [Transfer Type Screen Method]
  • 7.4.3 Knife-cut or Hand-cut Film Process
  • 7.4.4 Photographic Techniques
  • 7.5 Printing Inks
  • 7.5.1 Ultraviolet Curing Inks
  • 7.6 Printing Process
  • 7.6.1 Manual Screen Printing Process
  • 7.6.2 Automatic or Semi-automatic Screen Printing Process
  • 7.7 Photo Printing
  • 7.7.1 Liquid Photo-resist (Wet Film Resist)
  • 7.7.2 Dry Film Photo-resists
  • 7.8 Laser Direct Imaging (LDI)
  • 7.8.1 Benefits of LDI
  • 7.9 Legend Printing
  • 7.10 Useful Standards
  • 8. Plating Processes
  • 8.1 Need for Plating
  • 8.2 Electroplating
  • 8.2.1 The Basic Electroplating Process
  • 8.2.2 Faraday's Laws of Electrolysis
  • 8.2.3 Water Quality
  • 8.2.4 pH of a Solution
  • 8.2.5 Buffer
  • 8.2.6 Anodes
  • 8.2.7 Anode Bags
  • 8.2.8 Pre-treatment for Electroplating
  • 8.3 Plating Techniques
  • 8.3.1 Immersion Plating
  • 8.3.2 Electroless Plating
  • 8.3.3 Electroplating
  • 8.4 General Problems in Plating
  • 8.5 General Plating Defects
  • 8.5.1 Voids
  • 8.5.2 Blow Holes
  • 8.5.3 Outgassing
  • 8.6 Special Plating Techniques
  • 8.6.1 Through-hole Plating
  • 8.6.2 Reel-to-Reel Selective Plating
  • 8.6.3 Brush Plating
  • 8.6.4 Finger Plating
  • 8.6.5 Conductor Metal Paste Coating
  • 8.6.6 Reduction Silver Spraying
  • 8.7 Metal Distribution and Plating Thickness
  • 8.7.1 Analysis of Solution (Wet Chemical Analysis)
  • 8.7.2 Physical Tests for Solutions
  • 8.7.3 Testing of Electrodeposits
  • 8.8 Considerations for Shop Floor
  • 8.8.1 Plating Shop Layout
  • 8.8.2 Equipment
  • 8.9 Additive Processing
  • 8.9.1 Fully Additive Process
  • 8.9.2 Semi Additive Process
  • 8.9.3 Partially Additive Process
  • 8.10 Solder Mask
  • 8.10.1 Solder Resist Classification
  • 8.10.2 Liquid Film Solder Mask
  • 8.10.3 Dry Film Solder Masking
  • 8.10.4 Resolution
  • 8.10.5 Encapsulation
  • 8.10.6 Surface Topography Resist Thickness
  • 8.10.7 Placement Assistance
  • 8.10.8 Reliability of Solder Mask
  • 8.10.9 Soldering and Cleaning
  • 8.10.10 Tenting of Vias
  • 8.10.11 Solder Mask over Bare Copper [SMOBC]
  • 8.11 Conformal Coatings
  • 8.11.1 Materials for Conformal Coatings
  • 8.11.2 Methods of Applying Conformal Coatings
  • 8.11.3 Standards for Coatings
  • 8.12 Useful Standards
  • 9. Etching Techniques
  • 9.1 Etching Solutions and Chemistry
  • 9.1.1 Ferric Chloride
  • 9.1.2 Hydrogen Peroxide — Sulphuric Acid
  • 9.1.3 Chromic-Sulphuric Acid
  • 9.1.4 Cupric Chloride
  • 9.1.5 Ammonium Persulphate
  • 9.1.6 Alkaline Ammoniacal/Ammonium Chloride
  • 9.2 Etching Arrangements
  • 9.2.1 Simple Batch Production Etching
  • 9.2.2 Continuous Feed Etching
  • 9.2.3 Open Loop Regeneration
  • 9.2.4 Closed Loop Regeneration
  • 9.3 Etching Parameters
  • 9.4 Equipment and Techniques
  • 9.4.1 Immersion Etching
  • 9.4.2 Bubble Etching
  • 9.4.3 Splash Etching
  • 9.4.4 Spray Etching
  • 9.5 Etching Equipment Selection
  • 9.6 Optimizing Etchant Economy
  • 9.7 Problems in Etching
  • 9.7.1 Under-etching or Under-cut
  • 9.7.2 Overhang
  • 9.8 Facilities for Etching Area
  • 9.9 Electrochemical Etching
  • 9.10 Mechanical Etching
  • 10. Mechanical Operations
  • 10.1 Need for Mechanical Operations
  • 10.2 Cutting Methods
  • 10.2.1 Shearing
  • 10.2.2 Sawing
  • 10.2.3 Blanking of PCBs
  • 10.2.4 Milling
  • 10.2.5 Routing of PCBs
  • 10.3 Hole Punching
  • 10.4 Drilling
  • 10.4.1 Drill Bit Geometry and its Importance
  • 10.4.2 Types of Drill Bits
  • 10.4.3 Drill Bit Inspection
  • 10.4.4 Drill Bit Sizes
  • 10.4.5 Tool Life and Re-grinding (Re-pointing)
  • 10.4.6 Requirements in Drilling
  • 10.4.7 Drill Speed, Feed and Withdrawal Rates
  • 10.4.8 Function of Clean Holes
  • 10.4.9 Drill Entry and Exit (Back-up) Materials
  • 10.4.10 Use of Drill Bush/Collar
  • 10.4.11 Drilling and Types of Laminates
  • 10.4.12 Drilling Problems
  • 10.4.13 Drilling Machines
  • 10.5 Microvias
  • 10.5.1 Photo-formed Vias
  • 10.5.2 Plasma Etching
  • 10.5.3 Laser-formed Vias
  • 10.6 Use of UV Laser for Drilling PCB
  • 10.7 Hybrid Laser Drilling Process
  • 10.8 Useful Standards
  • 11. Multi-layer Boards
  • 11.1 What are Multi-layers?
  • 11.2 Interconnection Techniques
  • 11.2.1 Conventional Plated Through-hole
  • 11.2.2 Buried Via
  • 11.2.3 Blind Vias
  • 11.3 Materials for Multi-layer Boards
  • 11.3.1 Resin System
  • 11.3.2 Reinforcement Materials
  • 11.3.3 Prepreg
  • 11.3.4 Copper Foil
  • 11.4 Design Features of Multi-layer Boards
  • 11.4.1 Mechanical Design Considerations
  • 11.4.2 Electrical Design Considerations
  • 11.5 Fabrication Process for Multi-layer Boards
  • 11.5.1 General Process
  • 11.5.2 Lamination
  • 11.5.3 Post-lamination Process
  • 11.5.4 Multi-layer Drilling
  • 11.5.5 Schematic Key for Multi-layer Built-ups
  • 11.6 Useful Standards
  • 12. Flexible Printed Circuit Boards
  • 12.1 What are Flexible Printed Circuit Boards?
  • 12.2 Construction of Flexible Printed Circuit Boards
  • 12.2.1 Films — Types and Their Characteristics
  • 12.2.2 Foils
  • 12.2.3 Adhesives
  • 12.3 Design Considerations in Flexible Circuits
  • 12.3.1 Difference in Design Considerations of Rigid and Flexible Circuits
  • 12.3.2 Step-by-step Approach to Designing of a Flex Circuit
  • 12.3.3 Designing for Flexibility and Reliability
  • 12.4 Manufacture of Flexible Circuits
  • 12.5 Rigid Flex Printed Circuit Boards
  • 12.6 Terminations
  • 12.7 Advantages of Flexible Circuits
  • 12.8 Special Applications of Flexible Circuits
  • 12.9 Useful Standards
  • 13. Soldering, Assembly and Re-working Techniques
  • 13.1 What is Soldering?
  • 13.2 Theory of Soldering
  • 13.2.1 The Wetting Action
  • 13.2.2 Surface Tension
  • 13.2.3 Creation of an Inter-metallic Compound
  • 13.2.4 The Wetting Angle
  • 13.3 Soldering Variables
  • 13.3.1 Temperature and Time Taken for Soldering
  • 13.3.2 Tarnish-free Surface
  • 13.3.3 Application of Right Flux and Proper Solder
  • 13.4 Soldering Material
  • 13.4.1 Solder
  • 13.4.2 Flux
  • 13.5 Soldering and Brazing
  • 13.5.1 Solders for Hard Soldering/Brazing
  • 13.6 Soldering Tools
  • 13.6.1 Soldering Iron
  • 13.7 Other Hand Soldering Tools
  • 13.7.1 Cutters
  • 13.7.2 Pliers
  • 13.7.3 Strippers
  • 13.7.4 Bending Tools
  • 13.7.5 Heat Sinks
  • 13.7.6 General Cleaning Tools
  • 13.8 Hand Soldering
  • 13.8.1 Hand Soldering Requirements
  • 13.8.2 Steps in Hand Soldering
  • 13.8.3 Soldering Leadless Capacitors
  • 13.9 PCB Assembly Process
  • 13.9.1 Leaded Through-hole Assembly
  • 13.9.2 Surface Mount Assembly
  • 13.9.3 Combinations of Mixed Technologies
  • 13.10 Solder Pastes for SMDS
  • 13.10.1 Requirements of Solder Pastes
  • 13.10.2 Composition of Solder Pastes
  • 13.10.3 Solder Paste Application
  • 13.10.4 Handling of Solder Paste
  • 13.10.5 Stencil Printing of Solder Paste
  • 13.10.6 Screen Printing of Solder Paste
  • 13.10.7 Pre-forms of Solder
  • 13.10.8 No-clean Solder Paste
  • 13.11 Adhesive for Mixed Technology Assembly
  • 13.11.1 Requirements of Adhesive
  • 13.11.2 Application of Adhesive
  • 13.12 Mass Soldering
  • 13.12.1 Dip Soldering
  • 13.12.2 Drag Soldering
  • 13.12.3 Wave Soldering
  • 13.12.4 Reflow Soldering
  • 13.12.5 Vapour Phase System
  • 13.13 Post-soldering Cleaning
  • 13.13.1 Types of Contamination
  • 13.13.2 Solvents and Cleaning Methods
  • 13.14 Quality Control of Solder Joints
  • 13.14.1 Good Quality Solder Joints
  • 13.14.2 Common Soldering Faults
  • 13.14.3 Solder Joint Defects and their Common Causes
  • 13.15 Health and Safety Aspects
  • 13.16 Electrostatic Discharge Control
  • 13.16.1 Fundamentals of ESD
  • 13.16.2 Electrostatic Voltages Generated by Various Operations
  • 13.16.3 Sensitivity of Various Components to ESD Voltages
  • 13.16.4 Electrostatic Protection
  • 13.16.5 Anti-static Workstation
  • 13.16.6 A Proper Assembly Environment
  • 13.16.7 Component Handling
  • 13.16.8 Special Considerations for Handling MOS Devices
  • 13.16.9 Education/Certificate for ESD Control
  • 13.17 Re-work and Repair of Printed Circuit Boards
  • 13.17.1 Approaching Components for Tests
  • 13.17.2 De-soldering Techniques
  • 13.17.3 Replacement of Components
  • 13.18 Repairing Surface Mounted PCBs
  • 13.18.1 Cut all Leads
  • 13.18.2 Heating Methods
  • 13.18.3 Removal and Replacement of Surface Mount Devices
  • 13.18.4 Re-work Stations
  • 13.19 Useful Standards
  • 14. Quality, Reliability and Acceptability Aspects
  • 14.1 What is Quality Assurance?
  • 14.1.1 Classification of Defects
  • 14.1.2 Defectives
  • 14.1.3 Acceptability Quality Level (AQL)
  • 14.1.4 Quality Control Programme
  • 14.1.5 Statistical Process Control and Sampling Plan
  • 14.2 Testing for Quality Control
  • 14.2.1 Characteristics for Testing for Quality Assurance
  • 14.2.2 Designing a QA Programme
  • 14.2.3 Incoming QA
  • 14.2.4 Traceability
  • 14.3 Quality Control Methods
  • 14.3.1 Micro-sectioning
  • 14.4 Testing of Printed Circuit Boards
  • 14.4.1 Automatic Board Testing
  • 14.4.2 Bare Board Testing (BBT)
  • 14.4.3 Testing of Assembled Boards
  • 14.5 Reliability Testing
  • 14.5.1 Reliability of Printed Circuit Boards
  • 14.6 Acceptability of PCBs
  • 14.6.1 Acceptance Criteria
  • 14.6.2 Inspection of Assembled PCBs
  • 14.6.3 Inspection Techniques
  • 14.6.4 Acceptability Criteria
  • 14.7 Useful Standards
  • 15. Environmental Concerns in PCB Industry
  • 15.1 Pollution Control in PCB Industry
  • 15.2 Polluting Agents
  • 15.3 Recycling of Water
  • 15.4 Recovery Techniques
  • 15.4.1 Filtration
  • 15.4.2 Water Use Reduction Technique
  • 15.4.3 Ion Exchange System
  • 15.4.4 Reverse Osmosis
  • 15.4.5 Evaporative Recovery
  • 15.4.6 Precipitation of Heavy Metals
  • 15.4.7 Electrolytic Recovery
  • 15.5 Air Pollution
  • 15.5.1 Dust
  • 15.5.2 Fumes
  • 15.5.3 Clean Environment in Assembly Rooms
  • 15.6 Recycling of Printed Circuit Boards
  • 15.6.1 Present Approach to PCB Scrap Disposal
  • 15.6.2 Characteristics of PCB Scrap
  • 15.6.3 Dis-assembly of Equipment
  • 15.6.4 Technologies of Recycling of PCBs
  • 15.7 Environmental Standards
  • 15.8 Safety Precautions for the Personnel
  • 15.9 Toxic Chemicals in PCB Fabrication
  • 15.10 Lead-free Soldering
  • 15.10.1 Substitutes for Tin/Lead Solders
  • 15.11 Useful Standards
  • Glossary
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • References
  • Index