CITATION

Waite, Lee. Biofluid Mechanics in Cardiovascular Systems. US: McGraw-Hill Professional, 2005.

Biofluid Mechanics in Cardiovascular Systems

Authors:

Published:  November 2005

eISBN: 9780071588942 0071588949 | ISBN: 9780071447881
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1. Review of Basic Fluid Mechanics Concepts
  • 1.1 A Brief History of Biomedical Fluid Mechanics
  • 1.2 Fluid Characteristics and Viscosity
  • 1.2.1 Displacement
  • 1.2.2 Shear stress
  • 1.3 Fundamental Method for Measuring Viscosity
  • 1.4 Introduction to Pipe Flow
  • 1.4.1 Reynolds number
  • 1.4.2 Poiseuille's law
  • 1.4.3 Flow rate
  • 1.5 Bernoulli Equation
  • 1.6 Conservation of Mass
  • 1.6.1 Venturi meter example
  • 1.7 Example Problem: Fluid Statics
  • 1.7.1 Example problem: fluid statics
  • 1.8 The Wormersley Number,α, a Frequency Parameter for Pulsatile Flow
  • Chapter 2. Cardiovascular Structure and Function
  • 2.1 Introduction
  • 2.2 Clinical Features
  • 2.3 Functional Anatomy
  • 2.4 The Heart as a Pump
  • 2.5 Cardiac Muscle
  • 2.5.1 Biopotential in myocardium
  • 2.5.2 Excitability
  • 2.5.3 Automaticity
  • 2.6 Heart Valves
  • 2.6.1 Clinical features
  • 2.7 Cardiac Cycle
  • 2.8 Heart Sounds
  • 2.8.1 Clinical features
  • 2.9 Factors Influencing Flow and Pressure
  • 2.10 Coronary Circulation
  • 2.10.1 Control of the coronary circulation
  • 2.10.2 Clinical features
  • 2.11 Microcirculation
  • 2.11.1 Capillary structure
  • 2.11.2 Capillary wall structure
  • Chapter 3. Pulmonary Anatomy, Pulmonary Physiology, and Respiration
  • 3.1 Introduction
  • 3.2 Clinical Features
  • 3.3 Alveolar Ventilation
  • 3.3.1 Tidal volume
  • 3.3.2 Residual volume
  • 3.3.3 Expiratory reserve volume
  • 3.3.4 Inspiratory reserve volume
  • 3.3.5 Functional residual capacity
  • 3.3.6 Inspiratory capacity
  • 3.3.7 Total lung capacity
  • 3.3.8 Vital capacity
  • 3.4 Ventilation—Perfusion Relationships
  • 3.5 Mechanics of Breathing
  • 3.5.1 Muscles of inspiration
  • 3.5.2 Muscles of expiration
  • 3.5.3 Compliance of the lung and chest wall
  • 3.6 Work of Breathing
  • 3.7 Airway Resistance
  • 3.8 Gas Exchange and Transport
  • 3.8.1 Diffusion
  • 3.8.2 Diffusing capacity
  • 3.8.3 Resistance to diffusion
  • 3.8.4 Oxygen dissociation curve
  • 3.9 Pulmonary Pathophysiology
  • 3.9.1 Bronchitis
  • 3.9.2 Emphysema
  • 3.9.3 Asthma
  • 3.9.4 Pulmonary fibrosis
  • 3.9.5 Chronic obstructive pulmonary disease
  • 3.9.6 Heart disease
  • 3.9.7 Comparison of pulmonary pathologies
  • 3.10 Respiration in Extreme Environments
  • 3.10.1 Barometric pressure
  • 3.10.2 Partial pressure of oxygen
  • 3.10.3 Hyperventilation
  • 3.10.4 Alkalosis
  • 3.10.5 Acute mountain sickness (AMS)
  • 3.10.6 High-altitude pulmonary edema
  • 3.10.7 High-altitude cerebral edema
  • 3.10.8 Acclimatization
  • 3.10.9 Drugs stimulating red blood cell production
  • Chapter 4. Hematology and Blood Rheology
  • 4.1 Introduction
  • 4.2 Elements of Blood
  • 4.3 Blood Characteristics
  • 4.4 Erythrocytes
  • 4.4.1 Hemoglobin
  • 4.4.2 Clinical Features
  • 4.4.3 Erythrocyte indices
  • 4.4.4 Abnormalities of the blood
  • 4.5 Leukocytes
  • 4.5.1 Neutrophils
  • 4.5.2 Lymphocytes
  • 4.5.3 Monocytes
  • 4.5.4 Eosinophils
  • 4.5.5 Basophils
  • 4.5.6 Leukemia
  • 4.5.7 Thrombocytes
  • 4.6 Blood Types
  • 4.6.1 Rh blood groups
  • 4.6.2 M and N blood group system
  • 4.7 Plasma
  • 4.7.1 Plasma viscosity
  • 4.7.2 Electrolyte composition of plasma
  • 4.8 Blood pH
  • 4.9 Clinical Features
  • Chapter 5. Anatomy and Physiology of Blood Vessels
  • 5.1 Introduction
  • 5.2 General Structure of Arteries
  • 5.2.1 Tunica intima
  • 5.2.2 Tunica media
  • 5.2.3 Tunica externa
  • 5.3 Types of Arteries
  • 5.3.1 Elastic arteries
  • 5.3.2 Muscular arteries
  • 5.3.3 Arterioles
  • 5.4 Mechanics of Arterial Walls
  • 5.5 Compliance
  • 5.6 Pressure-Strain Modulus
  • 5.7 Vascular Pathologies
  • 5.7.1 Atherosclerosis
  • 5.7.2 Stenosis
  • 5.7.3 Aneurysm
  • 5.7.4 Thrombosis
  • 5.7.5 Clinical aspects
  • 5.8 Stents
  • 5.9 Coronary Artery Bypass Grafting
  • 5.9.1 Arterial grafts
  • Chapter 6. Mechanics of Heart Valves
  • 6.1 Introduction
  • 6.2 Aortic and Pulmonic Valves
  • 6.3 Mitral and Tricuspid Valves
  • 6.4 Clinical Features
  • 6.5 Prosthetic Mechanical Valves
  • 6.5.1 Case study–the Björk-Shiley convexo-concave heart valve
  • 6.6 Prosthetic Tissue Valves
  • Chapter 7. Pulsatile Flow in Large Arteries
  • 7.1 Fluid Kinematics
  • 7.2 Continuity
  • 7.3 Complex Numbers
  • 7.4 Fourier Series Representation
  • 7.5 Navier-Stokes Equations
  • 7.6 Pulsatile Flow in Rigid Tubes: Wormersley Solution
  • 7.7 Pulsatile Flow in Rigid Tubes: Fry Solution
  • 7.8 Instability in Pulsatile Flow
  • Chapter 8. Flow and Pressure Measurement
  • 8.1 Introduction
  • 8.2 Indirect Pressure Measurements
  • 8.3 Direct Pressure Measurement
  • 8.3.1 Intravascular: strain gauge–tipped pressure transducer
  • 8.3.2 Extravascular: catheter-transducer measuring system
  • 8.3.3 Electrical analog of the catheter measuring system
  • 8.3.4 Characteristics for an extravascular pressure measuring system
  • 8.3.5 Case 1—the undamped catheter measurement system
  • 8.3.6 Case 2—the undriven, damped catheter measurement system
  • 8.3.7 Pop test—measurement of transient step response
  • 8.4 Flow Measurement
  • 8.4.1 Indicator dilution method
  • 8.4.2 Fick technique for measuring cardiac output
  • 8.4.3 Fick technique example
  • 8.4.4 Rapid injection indicator-dilution method—dye dilution technique
  • 8.4.5 Thermodilution
  • 8.4.6 Electromagnetic flowmeters
  • 8.4.7 Continuous wave ultrasonic flowmeters
  • 8.4.8 Continuous wave Doppler ultrasound example
  • 8.5 Summary and Clinical Applications
  • Chapter 9. Modeling
  • 9.1 Introduction
  • 9.2 Theory of Models
  • 9.2.1 Dimensional analysis and the Buckingham Pi theorem
  • 9.2.2 Synthesizing Pi terms
  • 9.3 Geometric Similarity
  • 9.4 Dynamic Similarity
  • 9.5 Kinematic Similarity
  • 9.6 Common Dimensionless Parameters in Fluid Mechanics
  • 9.7 Modeling Example 1—Does the Flea Model the Man?
  • 9.8 Modeling Example 2
  • 9.9 Modeling Example 3
  • Chapter 10. Lumped Parameter Mathematical Models
  • 10.1 Introduction
  • 10.2 Electrical Analog Model of Flow in a Tube
  • 10.2.1 Nodes and the equations at each node
  • 10.2.2 Terminal load
  • 10.2.3 Summary of the lumped parameter electrical analog model
  • 10.3 Modeling of Flow through the Mitral Valve
  • 10.3.1 Model description
  • 10.3.2 Active ventricular relaxation
  • 10.3.3 Meaning of convective resistance
  • 10.3.4 Variable area mitral valve model description
  • 10.3.5 Variable area mitral valve model parameters
  • 10.3.6 Solving the system of differential equations
  • 10.3.7 Model trials
  • 10.3.8 Results
  • 10.4 Summary
  • Index