CITATION

Antoniou, Andreas. Digital Signal Processing. US: McGraw-Hill Professional, 2005.

Digital Signal Processing

Published:  September 2005

eISBN: 9780071589048 007158904X | ISBN: 9780071454247
  • Table of Contents
  • Preface
  • Chapter 1. Introduction to Digital Signal Processing
  • 1.1 Introduction
  • 1.2 Signals
  • 1.3 Frequency-Domain Representation
  • 1.4 Notation
  • 1.5 Signal Processing
  • 1.6 Analog Filters
  • 1.7 Applications of Analog Filters
  • 1.8 Digital Filters
  • 1.9 Two DSP Applications
  • 1.9.1 Processing of EKG signals
  • 1.9.2 Processing of Stock-Exchange Data
  • References
  • Chapter 2. The Fourier Series and Fourier Transform
  • 2.1 Introduction
  • 2.2 Fourier Series
  • 2.2.1 Definition
  • 2.2.2 Particular Forms
  • 2.2.3 Theorems and Properties
  • 2.3 Fourier Transform
  • 2.3.1 Derivation
  • 2.3.2 Particular Forms
  • 2.3.3 Theorems and Properties
  • References
  • Problems
  • Chapter 3. The z Transform
  • 3.1 Introduction
  • 3.2 Definition of z Transform
  • 3.3 Convergence Properties
  • 3.4 The z Transform as a Laurent Series
  • 3.5 Inverse z Transform
  • 3.6 Theorems and Properties
  • 3.7 Elementary Discrete-Time Signals
  • 3.8 z-Transform Inversion Techniques
  • 3.8.1 Use of Binomial Series
  • 3.8.2 Use of Convolution Theorem
  • 3.8.3 Use of Long Division
  • 3.8.4 Use of Initial-Value Theorem
  • 3.8.5 Use of Partial Fractions
  • 3.9 Spectral Representation of Discrete-Time Signals
  • 3.9.1 Frequency Spectrum
  • 3.9.2 Periodicity of Frequency Spectrum
  • 3.9.3 Interrelations
  • References
  • Problems
  • Chapter 4. Discrete-Time Systems
  • 4.1 Introduction
  • 4.2 Basic System Properties
  • 4.2.1 Linearity
  • 4.2.2 Time Invariance
  • 4.2.3 Causality
  • 4.3 Characterization of Discrete-Time Systems
  • 4.3.1 Nonrecursive Systems
  • 4.3.2 Recursive Systems
  • 4.4 Discrete-Time System Networks
  • 4.4.1 Network Analysis
  • 4.4.2 Implementation of Discrete-Time Systems
  • 4.4.3 Signal Flow-Graph Analysis
  • 4.5 Introduction to Time-Domain Analysis
  • 4.6 Convolution Summation
  • 4.6.1 Graphical Interpretation
  • 4.6.2 Alternative Classification
  • 4.7 Stability
  • 4.8 State-Space Representation
  • 4.8.1 Computability
  • 4.8.2 Characterization
  • 4.8.3 Time-Domain Analysis
  • 4.8.4 Applications of State-Space Method
  • References
  • Problems
  • Chapter 5. The Application of the z Transform
  • 5.1 Introduction
  • 5.2 The Discrete-Time Transfer Function
  • 5.2.1 Derivation of H(z) from Difference Equation
  • 5.2.2 Derivation of H(z) from System Network
  • 5.2.3 Derivation of H(z) from State-Space Characterization
  • 5.3 Stability
  • 5.3.1 Constraint on Poles
  • 5.3.2 Constraint on Eigenvalues
  • 5.3.3 Stability Criteria
  • 5.3.4 Test for Common Factors
  • 5.3.5 Schur-Cohn Stability Criterion
  • 5.3.6 Schur-Cohn-Fujiwara Stability Criterion
  • 5.3.7 Jury-Marden Stability Criterion
  • 5.3.8 Lyapunov Stability Criterion
  • 5.4 Time-Domain Analysis
  • 5.5 Frequency-Domain Analysis
  • 5.5.1 Steady-State Sinusoidal Response
  • 5.5.2 Evaluation of Frequency Response
  • 5.5.3 Periodicity of Frequency Response
  • 5.5.4 Aliasing
  • 5.5.5 Frequency Response of Digital Filters
  • 5.6 Transfer Functions for Digital Filters
  • 5.6.1 First-Order Transfer Functions
  • 5.6.2 Second-Order Transfer Functions
  • 5.6.3 Higher-Order Transfer Functions
  • 5.7 Amplitude and Delay Distortion
  • References
  • Problems
  • Chapter 6. The Sampling Process
  • 6.1 Introduction
  • 6.2 Fourier Transform Revisited
  • 6.2.1 Impulse Functions
  • 6.2.2 Periodic Signals
  • 6.2.3 Unit-Step Function
  • 6.2.4 Generalized Functions
  • 6.3 Interrelation Between the Fourier Series and the Fourier Transform
  • 6.4 Poisson's Summation Formula
  • 6.5 Impulse-Modulated Signals
  • 6.5.1 Interrelation Between the Fourier and z Transforms
  • 6.5.2 Spectral Relationship Between Discrete- and Continuous-Time Signals
  • 6.6 The Sampling Theorem
  • 6.7 Aliasing
  • 6.8 Graphical Representation of Interrelations
  • 6.9 Processing of Continuous-Time Signals Using Digital Filters
  • 6.10 Practical A/D and D/A Converters
  • References
  • Problems
  • Chapter 7. The Discrete Fourier Transform
  • 7.1 Introduction
  • 7.2 Definition
  • 7.3 Inverse DFT
  • 7.4 Properties
  • 7.4.1 Linearity
  • 7.4.2 Periodicity
  • 7.4.3 Symmetry
  • 7.5 Interrelation Between the DFT and the z Transform
  • 7.5.1 Frequency-Domain Sampling Theorem
  • 7.5.2 Time-Domain Aliasing
  • 7.6 Interrelation Between the DFT and the CFT
  • 7.6.1 Time-Domain Aliasing
  • 7.7 Interrelation Between the DFT and the Fourier Series
  • 7.8 Window Technique
  • 7.8.1 Continuous-Time Windows
  • 7.8.2 Discrete-Time Windows
  • 7.8.3 Periodic Discrete-Time Windows
  • 7.8.4 Application of Window Technique
  • 7.9 Simplified Notation
  • 7.10 Periodic Convolutions
  • 7.10.1 Time-Domain Periodic Convolution
  • 7.10.2 Frequency-Domain Periodic Convolution
  • 7.11 Fast Fourier-Transform Algorithms
  • 7.11.1 Decimation-in-Time Algorithm
  • 7.11.2 Decimation-in-Frequency Algorithm
  • 7.11.3 Inverse DFT
  • 7.12 Application of the FFT Approach to Signal Processing
  • 7.12.1 Overlap-and-Add Method
  • 7.12.2 Overlap-and-Save Method
  • References
  • Problems
  • Chapter 8. Realization of Digital Filters
  • 8.1 Introduction
  • 8.2 Realization
  • 8.2.1 Direct Realization
  • 8.2.2 Direct Canonic Realization
  • 8.2.3 State-Space Realization
  • 8.2.4 Lattice Realization
  • 8.2.5 Cascade Realization
  • 8.2.6 Parallel Realization
  • 8.2.7 Transposition
  • 8.3 Implementation
  • 8.3.1 Design Considerations
  • 8.3.2 Systolic Implementations
  • References
  • Problems
  • Chapter 9. Design of Nonrecursive (FIR) Filters
  • 9.1 Introduction
  • 9.2 Properties of Constant-Delay Nonrecursive Filters
  • 9.2.1 Impulse Response Symmetries
  • 9.2.2 Frequency Response
  • 9.2.3 Location of Zeros
  • 9.3 Design Using the Fourier Series
  • 9.4 Use of Window Functions
  • 9.4.1 Rectangular Window
  • 9.4.2 von Hann and Hamming Windows
  • 9.4.3 Blackman Window
  • 9.4.4 Dolph-Chebyshev Window
  • 9.4.5 Kaiser Window
  • 9.4.6 Prescribed Filter Specifications
  • 9.4.7 Other Windows
  • 9.5 Design Based on Numerical-Analysis Formulas
  • References
  • Problems
  • Chapter 10. Approximations for Analog Filters
  • 10.1 Introduction
  • 10.2 Basic Concepts
  • 10.2.1 Characterization
  • 10.2.2 Laplace Transform
  • 10.2.3 The Transfer Function
  • 10.2.4 Time-Domain Response
  • 10.2.5 Frequency-Domain Analysis
  • 10.2.6 Ideal and Practical Filters
  • 10.2.7 Realizability Constraints
  • 10.3 Butterworth Approximation
  • 10.3.1 Derivation
  • 10.3.2 Normalized Transfer Function
  • 10.3.3 Minimum Filter Order
  • 10.4 Chebyshev Approximation
  • 10.4.1 Derivation
  • 10.4.2 Zeros of Loss Function
  • 10.4.3 Normalized Transfer Function
  • 10.4.4 Minimum Filter Order
  • 10.5 Inverse-Chebyshev Approximation
  • 10.5.1 Normalized Transfer Function
  • 10.5.2 Minimum Filter Order
  • 10.6 Elliptic Approximation
  • 10.6.1 Fifth-Order Approximation
  • 10.6.2 Nth-Order Approximation (n Odd)
  • 10.6.3 Zeros and Poles of L(–s[sup(2)])
  • 10.6.4 Nth-Order Approximation (n Even)
  • 10.6.5 Specification Constraint
  • 10.6.6 Normalized Transfer Function
  • 10.7 Bessel-Thomson Approximation
  • 10.8 Transformations
  • 10.8.1 Lowpass-to-Lowpass Transformation
  • 10.8.2 Lowpass-to-Bandpass Transformation
  • References
  • Problems
  • Chapter 11. Design of Recursive (IIR) Filters
  • 11.1 Introduction
  • 11.2 Realizability Constraints
  • 11.3 Invariant Impulse-Response Method
  • 11.4 Modified Invariant Impulse-Response Method
  • 11.5 Matched-z Transformation Method
  • 11.6 Bilinear-Transformation Method
  • 11.6.1 Derivation
  • 11.6.2 Mapping Properties of Bilinear Transformation
  • 11.6.3 The Warping Effect
  • 11.7 Digital-Filter Transformations
  • 11.7.1 General Transformation
  • 11.7.2 Lowpass-to-Lowpass Transformation
  • 11.7.3 Lowpass-to-Bandstop Transformation
  • 11.7.4 Application
  • 11.8 Comparison Between Recursive and Nonrecursive Designs
  • References
  • Problems
  • Chapter 12. Recursive (IIR) Filters Satisfying Prescribed Specifications
  • 12.1 Introduction
  • 12.2 Design Procedure
  • 12.3 Design Formulas
  • 12.3.1 Lowpass and Highpass Filters
  • 12.3.2 Bandpass and Bandstop Filters
  • 12.3.3 Butterworth Filters
  • 12.3.4 Chebyshev Filters
  • 12.3.5 Inverse-Chebyshev Filters
  • 12.3.6 Elliptic Filters
  • 12.4 Design Using the Formulas and Tables
  • 12.5 Constant Group Delay
  • 12.5.1 Delay Equalization
  • 12.5.2 Zero-Phase Filters
  • 12.6 Amplitude Equalization
  • References
  • Problems
  • Chapter 13. Random Signals
  • 13.1 Introduction
  • 13.2 Random Variables
  • 13.2.1 Probability-Distribution Function
  • 13.2.2 Probability-Density Function
  • 13.2.3 Uniform Probability Density
  • 13.2.4 Gaussian Probability Density
  • 13.2.5 Joint Distributions
  • 13.2.6 Mean Values and Moments
  • 13.3 Random Processes
  • 13.3.1 Notation
  • 13.4 First- and Second-Order Statistics
  • 13.5 Moments and Autocorrelation
  • 13.6 Stationary Processes
  • 13.7 Frequency-Domain Representation
  • 13.8 Discrete-Time Random Processes
  • 13.9 Filtering of Discrete-Time Random Signals
  • References
  • Problems
  • Chapter 14. Effects of Finite Word Length in Digital Filters
  • 14.1 Introduction
  • 14.2 Number Representation
  • 14.2.1 Binary System
  • 14.2.2 Fixed-Point Arithmetic
  • 14.2.3 Floating-Point Arithmetic
  • 14.2.4 Number Quantization
  • 14.3 Coefficient Quantization
  • 14.4 Low-Sensitivity Structures
  • 14.4.1 Case I
  • 14.4.2 Case II
  • 14.5 Product Quantization
  • 14.6 Signal Scaling
  • 14.6.1 Method A
  • 14.6.2 Method B
  • 14.6.3 Types of Scaling
  • 14.6.4 Application of Scaling
  • 14.7 Minimization of Output Roundoff Noise
  • 14.8 Application of Error-Spectrum Shaping
  • 14.9 Limit-Cycle Oscillations
  • 14.9.1 Quantization Limit Cycles
  • 14.9.2 Overflow Limit Cycles
  • 14.9.3 Elimination of Quantization Limit Cycles
  • 14.9.4 Elimination of Overflow Limit Cycles
  • References
  • Problems
  • Chapter 15. Design of Nonrecursive Filters Using Optimization Methods
  • 15.1 Introduction
  • 15.2 Problem Formulation
  • 15.2.1 Lowpass and Highpass Filters
  • 15.2.2 Bandpass and Bandstop Filters
  • 15.2.3 Alternation Theorem
  • 15.3 Remez Exchange Algorithm
  • 15.3.1 Initialization of Extremals
  • 15.3.2 Location of Maxima of the Error Function
  • 15.3.3 Computation of |E(ω)| and P[sub(c)](ω)
  • 15.3.4 Rejection of Superfluous Potential Extremals
  • 15.3.5 Computation of Impulse Response
  • 15.4 Improved Search Methods
  • 15.4.1 Selective Step-by-Step Search
  • 15.4.2 Cubic Interpolation
  • 15.4.3 Quadratic Interpolation
  • 15.4.4 Improved Formulation
  • 15.5 Efficient Remez Exchange Algorithm
  • 15.6 Gradient Information
  • 15.6.1 Property 1
  • 15.6.2 Property 2
  • 15.6.3 Property 3
  • 15.6.4 Property 4
  • 15.6.5 Property 5
  • 15.7 Prescribed Specifications
  • 15.8 Generalization
  • 15.8.1 Antisymmetrical Impulse Response and Odd Filter Length
  • 15.8.2 Even Filter Length
  • 15.9 Digital Differentiators
  • 15.9.1 Problem Formulation
  • 15.9.2 First Derivative
  • 15.9.3 Prescribed Specifications
  • 15.10 Arbitrary Amplitude Responses
  • 15.11 Multiband Filters
  • References
  • Additional References
  • Problems
  • Chapter 16. Design of Recursive Filters Using Optimization Methods
  • 16.1 Introduction
  • 16.2 Problem Formulation
  • 16.3 Newton's Method
  • 16.4 Quasi-Newton Algorithms
  • 16.4.1 Basic Quasi-Newton Algorithm
  • 16.4.2 Updating Formulas for Matrix S[sub(k+1)]
  • 16.4.3 Inexact Line Searches
  • 16.4.4 Practical Quasi-Newton Algorithm
  • 16.5 Minimax Algorithms
  • 16.6 Improved Minimax Algorithms
  • 16.7 Design of Recursive Filters
  • 16.7.1 Objective Function
  • 16.7.2 Gradient Information
  • 16.7.3 Stability
  • 16.7.4 Minimum Filter Order
  • 16.7.5 Use of Weighting
  • 16.8 Design of Recursive Delay Equalizers
  • References
  • Additional References
  • Problems
  • Chapter 17. Wave Digital Filters
  • 17.1 Introduction
  • 17.2 Sensitivity Considerations
  • 17.3 Wave Network Characterization
  • 17.4 Element Realizations
  • 17.4.1 Impedances
  • 17.4.2 Voltage Sources
  • 17.4.3 Series Wire Interconnection
  • 17.4.4 Parallel Wire Interconnection
  • 17.4.5 2-Port Adaptors
  • 17.4.6 Transformers
  • 17.4.7 Unit Elements
  • 17.4.8 Circulators
  • 17.4.9 Resonant Circuits
  • 17.4.10 Realizability Constraint
  • 17.5 Lattice Wave Digital Filters
  • 17.5.1 Analysis
  • 17.5.2 Alternative Lattice Configuration
  • 17.5.3 Digital Realization
  • 17.6 Ladder Wave Digital Filters
  • 17.7 Filters Satisfying Prescribed Specifications
  • 17.8 Frequency-Domain Analysis
  • 17.9 Scaling
  • 17.10 Elimination of Limit-Cycle Oscillations
  • 17.11 Related Synthesis Methods
  • 17.12 A Cascade Synthesis Based on the Wave Characterization
  • 17.12.1 Generalized-Immittance Converters
  • 17.12.2 Analog G-CGIC Configuration
  • 17.12.3 Digital G-CGIC Configuration
  • 17.12.4 Cascade Synthesis
  • 17.12.5 Signal Scaling
  • 17.12.6 Output Noise
  • 17.13 Choice of Structure
  • References
  • Problems
  • Chapter 18. Digital Signal Processing Applications
  • 18.1 Introduction
  • 18.2 Sampling-Frequency Conversion
  • 18.2.1 Decimators
  • 18.2.2 Interpolators
  • 18.2.3 Sampling Frequency Conversion by a Noninteger Factor
  • 18.2.4 Design Considerations
  • 18.3 Quadrature-Mirror-Image Filter Banks
  • 18.3.1 Operation
  • 18.3.2 Elimination of Aliasing Errors
  • 18.3.3 Design Considerations
  • 18.3.4 Perfect Reconstruction
  • 18.4 Hilbert Transformers
  • 18.4.1 Design of Hilbert Transformers
  • 18.4.2 Single-Sideband Modulation
  • 18.4.3 Sampling of Bandpassed Signals
  • 18.5 Adaptive Digital Filters
  • 18.5.1 Wiener Filters
  • 18.5.2 Newton Algorithm
  • 18.5.3 Steepest-Descent Algorithm
  • 18.5.4 Least-Mean-Square Algorithm
  • 18.5.5 Recursive Filters
  • 18.5.6 Applications
  • 18.6 Two-Dimensional Digital Filters
  • 18.6.1 Two-Dimensional Convolution
  • 18.6.2 Two-Dimensional z Transform
  • 18.6.3 Two-Dimensional Transfer Function
  • 18.6.4 Stability
  • 18.6.5 Frequency-Domain Analysis
  • 18.6.6 Types of 2-D Filters
  • 18.6.7 Approximations
  • 18.6.8 Applications
  • References
  • Additional References
  • Problems
  • Appendix A. Complex Analysis
  • A.1 Introduction
  • A.2 Complex Numbers
  • A.2.1 Complex Arithmetic
  • A.2.2 De Moivre's Theorem
  • A.2.3 Euler's Formula
  • A.2.4 Exponential Form
  • A.2.5 Vector Representation
  • A.2.6 Spherical Representation
  • A.3 Functions of a Complex Variable
  • A.3.1 Polynomials
  • A.3.2 Inverse Algebraic Functions
  • A.3.3 Trigonometric Functions and Their Inverses
  • A.3.4 Hyperbolic Functions and Their Inverses
  • A.3.5 Multi-Valued Functions
  • A.3.6 Periodic Functions
  • A.3.7 Rational Algebraic Functions
  • A.4 Basic Principles of Complex Analysis
  • A.4.1 Limit
  • A.4.2 Differentiability
  • A.4.3 Analyticity
  • A.4.4 Zeros
  • A.4.5 Singularities
  • A.4.6 Zero-Pole Plots
  • A.5 Series
  • A.6 Laurent Theorem
  • A.7 Residue Theorem
  • A.8 Analytic Continuation
  • A.9 Conformal Transformations
  • References
  • Appendix B. Elliptic Functions
  • B.1 Introduction
  • B.2 Elliptic Integral of the First Kind
  • B.3 Elliptic Functions
  • B.4 Imaginary Argument
  • B.5 Formulas
  • B.6 Periodicity
  • B.7 Transformation
  • B.8 Series Representation
  • References
  • Index