CITATION

Spiegel, Colleen. Designing and Building Fuel Cells. US: McGraw-Hill Professional, 2007.

Designing and Building Fuel Cells

Published:  May 2007

eISBN: 9780071510639 007151063X | ISBN: 9780071489775
  • Contents
  • Foreword
  • Chapter 1. An Introduction to Fuel Cells
  • 1.1 What Is a Fuel Cell?
  • 1.1.1 Comparison with batteries
  • 1.1.2 Comparison with heat engine
  • 1.2 Why Do We Need Fuel Cells?
  • 1.2.1 Portable sector
  • 1.2.2 Transportation sector
  • 1.2.3 Stationary sector
  • 1.3 History of Fuel Cells
  • 1.3.1 PEM fuel cells
  • 1.3.2 Solid oxide fuel cells
  • 1.3.3 Molten carbonate fuel cells
  • 1.3.4 Phosphoric acid fuel cells
  • 1.3.5 Alkali fuel cells
  • 1.4 How Do Fuel Cells Work?
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 2. Fuel Cells and the Hydrogen Economy
  • 2.1 Characteristics of Hydrogen
  • 2.1.1 Safety aspects of hydrogen as a fuel
  • 2.2 World Energy Demand
  • 2.3 Development of the Hydrogen Economy
  • 2.4 Hydrogen Production, Distribution, and Storage
  • 2.4.1 Technologies for hydrogen production
  • 2.4.2 Technologies for hydrogen storage
  • 2.4.3 Worldwide hydrogen refueling stations
  • 2.5 Investment of Hydrogen Infrastructure
  • 2.5.1 Government support
  • 2.5.2 Long-term projections of hydrogen use
  • 2.5.3 Key players in hydrogen R&D
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 3. Fuel Cell Types
  • 3.1 Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
  • 3.2 Alkaline Fuel Cells (AFCs)
  • 3.3 Phosphoric Acid Fuel Cells (PAFCs)
  • 3.4 Solid Oxide Fuel Cells (SOFCs)
  • 3.5 Molten-Carbonate Fuel Cells (MCFCs)
  • 3.6 Direct Methanol Fuel Cells (DMFCs)
  • 3.7 Zinc Air Fuel Cells (ZAFCs)
  • 3.8 Protonic Ceramic Fuel Cells (PCFCs)
  • 3.9 Biological Fuel Cells (BFCs)
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 4. Fuel Cell Applications
  • 4.1 Portable Power
  • 4.2 Backup Power
  • 4.2.1 Basic electrolyzer calculations
  • 4.3 Transportation Applications
  • 4.3.1 Automobiles
  • 4.3.2 Buses
  • 4.3.3 Utility vehicles
  • 4.3.4 Scooters and bicycles
  • 4.4 Stationary Power Applications
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 5. Basic Fuel Cell Thermodynamics
  • 5.1 Basic Thermodynamic Concepts
  • 5.2 Fuel Cell Reversible and Net Output Voltage
  • 5.3 Theoretical Fuel Cell Efficiency
  • 5.3.1 Energy efficiency
  • 5.4 Fuel Cell Temperature
  • 5.5 Fuel Cell Pressure
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 6. Fuel Cell Electrochemistry
  • 6.1 Electrode Kinetics
  • 6.2 Voltage Losses
  • 6.3 Internal Currents and Crossover Currents
  • 6.4 Improving Kinetic Performance
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 7. Fuel Cell Charge Transport
  • 7.1 Voltage Loss Due to Charge Transport
  • 7.2 Microscopic Conductivity in Metals
  • 7.3 Ionic Conductivity in Aqueous Electrolytes
  • 7.4 Ionic Conductivity of Polymer Electrolytes
  • 7.5 Ionic Conduction in Ceramic Electrolytes
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 8. Fuel Cell Mass Transport
  • 8.1 Convective Mass Transport from Flow Channels to Electrode
  • 8.2 Diffusive Mass Transport in Fuel Cell Electrodes
  • 8.3 Convective Mass Transport in Flow Structures
  • 8.3.1 Mass transport in flow channels
  • 8.3.2 Pressure drop in flow channels
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 9. Heat Transfer
  • 9.1 Fuel Cell Energy Balance
  • 9.1.1 General energy balance procedure
  • 9.1.2 Energy balance of fuel cell stack
  • 9.1.3 General energy balance for fuel cell
  • 9.1.4 Energy balance for fuel cell components and gases
  • 9.2 Heat Generation and Flux in Fuel Cell Layers
  • 9.3 Heat Conduction
  • 9.4 Heat Dissipation Through Natural Convection and Radiation
  • 9.5 Fuel Cell Heat Management
  • 9.5.1 Heat exchanger model
  • 9.5.2 Air cooling
  • 9.5.3 Edge cooling
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 10. Fuel Cell Modeling
  • 10.1 Conservation of Mass
  • 10.2 Conservation of Momentum
  • 10.3 Conservation of Energy
  • 10.4 Conservation of Species
  • 10.5 Conservation of Charge
  • 10.6 The Electrodes
  • 10.6.1 Mass transport
  • 10.6.2 Electrochemical behavior
  • 10.6.3 Ion/electron transport
  • 10.6.4 Heat transport in the electrodes
  • 10.7 The Electrolyte
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 11. Fuel Cell Materials
  • 11.1 Electrolyte Layer
  • 11.1.1 PEMFCs and DMFCs
  • 11.1.2 PAFCs
  • 11.1.3 AFCs
  • 11.1.4 MCFCs
  • 11.1.5 SOFCs
  • 11.2 Fuel Cell Electrode Layers
  • 11.2.1 PEMFC, DMFC, and PAFC catalysts
  • 11.2.2 PEMFC, DMFC, and PAFC gas diffusion layers
  • 11.2.3 AFC electrodes
  • 11.2.4 MCFC electrodes
  • 11.2.5 SOFC electrodes
  • 11.3 Low-Temperature Fuel Cell Processing Techniques
  • 11.4 SOFC manufacturing method
  • 11.5 Method for Building a Fuel Cell
  • 11.5.1 Preparing the polymer electrolyte membrane
  • 11.5.2 Catalyst/electrode layer material
  • 11.5.3 Hot-pressing the MEA
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 12. Fuel Cell Stack Components and Materials
  • 12.1 Bipolar Plates
  • 12.1.1 Bipolar plate materials for low and medium temperature fuel cells
  • 12.1.2 Coated metallic plates
  • 12.1.3 Composite plates
  • 12.2 Flow-Field Design
  • 12.3 Materials for SOFCs
  • 12.4 Materials for MCFCs
  • 12.5 PAFC Materials and Design
  • 12.6 Channel Shape, Dimensions, and Spacing
  • 12.7 Bipolar Plate Manufacturing
  • 12.7.1 Nonporous graphite plate fabrication
  • 12.7.2 Coated metallic plate fabrication
  • 12.7.3 Composite plate fabrication
  • 12.8 Gaskets and Spacers
  • 12.8.1 PEMFCs/DMFCs/AFCs
  • 12.8.2 SOFC Seals
  • 12.9 End Plates
  • 12.10 Constructing the Fuel Cell Bipolar Plates, Gaskets, End Plates, and Current Collectors
  • 12.10.1 Bipolar plate design
  • 12.10.2 Gasket selection
  • 12.10.3 End plates
  • 12.10.4 Current collectors
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 13. Fuel Cell Stack Design
  • 13.1 Fuel Cell Stack Sizing
  • 13.2 Number of Cells
  • 13.3 Stack Configuration
  • 13.4 Distribution of Fuel and Oxidants to the Cells
  • 13.5 Cell Interconnection
  • 13.5.1 SOFCs
  • 13.5.2 AFCs
  • 13.6 Stack Clamping
  • 13.7 Water Management for PEMFCs
  • 13.7.1 Water management methods
  • 13.8 Putting the fuel cell stack together
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 14. Fuel Cell System Design
  • 14.1 Fuel Subsystem
  • 14.1.1 Humidification systems
  • 14.1.2 Fans and Blowers
  • 14.1.3 Compressors
  • 14.1.4 Turbines
  • 14.1.5 Fuel cell pumps
  • 14.2 Electrical Subsystem
  • 14.2.1 Power diodes
  • 14.2.2 Switching devices
  • 14.2.3 Switching regulators
  • 14.2.4 Inverters
  • 14.2.5 Supercapacitors
  • 14.2.6 Power electronics for cellular phones
  • 14.2.7 DC-DC converters for automotive applications
  • 14.2.8 Multilevel converters for larger applications
  • 14.3 Fuel Cell Hybrid Power Systems
  • 14.4 System Efficiency
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 15. Fuel Types, Delivery, and Processing
  • 15.1 Hydrogen
  • 15.1.1 Gas
  • 15.1.2 Liquid
  • 15.1.3 Carbon nanofibers
  • 15.2 Other Common Fuel Types
  • 15.2.1 Methanol
  • 15.2.2 Ethanol
  • 15.2.3 Metal hydrides
  • 15.2.4 Chemical hydrides
  • 15.2.5 Ammonia
  • 15.2.6 Natural gas
  • 15.2.7 Propane
  • 15.2.8 Gasoline and other petroleumbased fuels
  • 15.2.9 Bio-fuels
  • 15.3 Fuel Processing
  • 15.3.1 Desulfurization
  • 15.3.2 Steam reforming
  • 15.3.3 Carbon formation
  • 15.3.4 Internal reforming
  • 15.3.5 Direct hydrocarbon oxidation
  • 15.3.6 Partial oxidation
  • 15.3.7 Pyrolysis
  • 15.3.8 Methanol reforming
  • 15.4 Bioproduction of Hydrogen
  • 15.4.1 Photosynthesis
  • 15.4.2 Digestion processes
  • 15.5 Electrolyzers
  • 15.5.1 Electrolyzer efficiency
  • 15.5.2 High pressure in electrolyzers
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 16. Fuel Cell Operating Conditions
  • 16.1 Operating Pressure
  • 16.2 Operating Temperature
  • 16.3 Flow Rates of Reactants
  • 16.4 Humidity of Reactants
  • 16.5 Fuel Cell Mass Balance
  • Chapter Summary
  • Problems
  • Bibliography
  • Chapter 17. Fuel Cell Characterization
  • 17.1 Fuel Cell Testing Setup
  • 17.2 Verification of the Assembly
  • 17.3 Fuel Cell Conditioning
  • 17.4 Baseline Test Conditions and Operating Parameters
  • 17.4.1 Temperature
  • 17.4.2 Pressure
  • 17.4.3 Flow rate
  • 17.4.4 Compression force
  • 17.5 Polarization Curves
  • 17.6 Fuel Cell Resistance
  • 17.6.1 Current interrupt
  • 17.6.2 The AC resistance method
  • 17.6.3 The high-frequency resistance (HFR) method
  • 17.6.4 Electrochemical (EIS) impedance spectroscopy
  • 17.6.5 Stoichiometry (utilization) sweeps
  • 17.6.6 Limiting current
  • 17.6.7 Cyclic voltammetry
  • 17.7 Current Density Mapping
  • 17.8 Neutron Imaging
  • 17.9 Characterization of Fuel Cell Layers
  • 17.9.1 Porosity determination
  • 17.9.2 BET surface area determination
  • 17.9.3 Transmission electron microscopy (TEM)
  • 17.9.4 Scanning electron microscopy (SEM)
  • 17.9.5 X-ray diffraction (XRD)
  • 17.9.6 Energy dispersive spectroscopy (EDS)
  • 17.9.7 X-ray fluorescence (XRF)
  • 17.9.8 Inductively coupled plasma mass spectroscopy (ICP-MS)
  • Chapter Summary
  • Problems
  • Bibliography
  • Appendix A. Useful Constants and Conversions
  • Appendix B. Thermodynamic Properties of Selected Substances
  • Appendix C. Molecular Weight, Gas Constant and Specific Heat for Selected Substances
  • Appendix D. Gas Specific Heats at Various Temperatures
  • Appendix E. Specific Heat for Saturated Liquid Water at Various Temperatures
  • Appendix F. Thermodynamic Data for Selected Fuel Cell Reactants at Various Temperatures
  • Appendix G. Binary Diffusion Coefficients for Selected Fuel Cell Substances
  • Appendix H. Product Design Specifications
  • Appendix I. Fuel Cell Design Requirements and Parameters
  • Index