CITATION

Nag, Ahindra. Biofuels Refining and Performance. US: McGraw-Hill Professional, 2007.

Biofuels Refining and Performance

Authors:

Published:  December 2007

eISBN: 9780071594783 0071594787 | ISBN: 9780071489706
  • Contents
  • Contributors
  • Preface
  • Chapter 1. Energy and Its Biological Resources
  • 1.1 Energy (Yesterday, Today, and Tomorrow)
  • 1.2 Energy
  • 1.2.1 Thermodynamics
  • 1.3 Energy-Dependent Ecosystems
  • 1.3.1 Photosynthetic factors
  • 1.4 Bioenergy
  • 1.5 Biological Energetics
  • 1.6 Chemical Cell
  • 1.7 Models of Bioenergy Cells
  • 1.7.1 Oxidative phosphorylation path
  • 1.7.2 Photosynthetic path
  • 1.8 A Living Cell Is an Ideal Cell
  • 1.9 Plant Cells Are Unique
  • 1.9.1 Photosynthetic bacteria
  • 1.10 Biofuels
  • 1.10.1 Heterocystous blue-green algae (example, Anabaena cylindrica)
  • 1.10.2 Photofermentation by photosynthetic bacteria (example, Rhodospirillium rubrum)
  • 1.10.3 Methane production
  • 1.11 Plant Hydrocarbons
  • 1.12 Biogas
  • 1.13 Gobargas
  • 1.14 Biomass, Gasification, and Pyrolysis
  • 1.14.1 Biomass
  • 1.14.2 Gasification and pyrolysis
  • 1.15 Bioluminescence
  • 1.16 Hydrogen
  • 1.16.1 Microbial conversion
  • References
  • Chapter 2. Photosynthetic Plants as Renewable Energy Sources
  • 2.1 Introduction
  • 2.2 Mechanism and Efficiency of Photosynthesis in Plants
  • 2.3 Photosynthetic Process
  • 2.3.1 Hill reaction (light reaction)
  • 2.3.2 Blackman's reaction (dark reaction)
  • 2.3.3 Efficiency of photosynthesis
  • 2.4 Plant Types and Growing Cycles
  • 2.5 Harvesting Plants for Bioenergy
  • 2.6 Products
  • 2.6.1 Gaseous products
  • 2.6.2 Liquid products
  • 2.6.3 Solid products
  • References
  • Chapter 3. Bioethanol: Market and Production Processes
  • 3.1 Introduction
  • 3.2 Global Market of Bioethanol and Future Prospects
  • 3.3 Overall Process of Bioethanol Production
  • 3.4 Production of Sugars from Raw Materials
  • 3.4.1 Sugar solution from starchy materials
  • 3.4.2 Acid hydrolysis of starch
  • 3.4.3 Enzymatic hydrolysis of starch
  • 3.5 Characterization of Lignocellulosic Materials
  • 3.5.1 Cellulose
  • 3.5.2 Hemicellulose
  • 3.5.3 Lignin
  • 3.6 Sugar Solution from Lignocellulosic Materials
  • 3.6.1 Chemical hydrolysis of lignocellulosic materials
  • 3.6.2 Pretreatment prior to enzymatic hydrolysis of lignocellulosic materials
  • 3.6.3 Enzymatic hydrolysis of lignocellulosic materials
  • 3.7 Basic Concepts of Fermentation
  • 3.8 Conversion of Simple Sugars to Ethanol
  • 3.9 Biochemical Basis of Ethanol Production from Hexoses
  • 3.10 Chemical Basis of Ethanol Production from Pentoses
  • 3.11 Microorganisms Related to Ethanol Fermentation
  • 3.11.1 Yeasts
  • 3.11.2 Bacteria
  • 3.11.3 Filamentous fungi
  • 3.12 Fermentation Process
  • 3.12.1 Batch processes
  • 3.12.2 Fed-batch processes
  • 3.12.3 Continuous processes
  • 3.12.4 Series-arranged continuous flow fermentation
  • 3.12.5 Strategies for fermentation of enzymatic lignocellulosic hydrolyzates
  • 3.12.6 Separate enzymatic hydrolysis and fermentation (SHF)
  • 3.12.7 Simultaneous saccharification and fermentation (SSF)
  • 3.12.8 Comparison between enzymatic and acid hydrolysis for lignocellulosic materials
  • 3.13 Ethanol Recovery
  • 3.14 Distillation
  • 3.15 Alternative Processes for Ethanol Recovery and Purification
  • 3.16 Ethanol Dehydration
  • 3.16.1 Molecular sieve adsorption
  • 3.16.2 Membrane technology
  • 3.17 Concluding Remarks and Future Prospects
  • References
  • Chapter 4. Raw Materials to Produce Low-Cost Biodiesel
  • 4.1 Introduction
  • 4.2 Nonedible Oils
  • 4.2.1 Bahapilu oil
  • 4.2.2 Castor oil
  • 4.2.3 Cottonseed oil
  • 4.2.4 Cuphea oil
  • 4.2.5 Jatropha curcas oil
  • 4.2.6 Karanja seed oil
  • 4.2.7 Linseed oil
  • 4.2.8 Mahua oil
  • 4.2.9 Nagchampa oil
  • 4.2.10 Neem oil
  • 4.2.11 Rubber seed oil
  • 4.2.12 Tonka bean oil
  • 4.3 Low-Cost Edible Oils
  • 4.3.1 Cardoon oil
  • 4.3.2 Ethiopian mustard oil
  • 4.3.3 Gold-of-pleasure oil
  • 4.3.4 Tigernut oil
  • 4.4 Used Frying Oils
  • 4.5 Animal Fats
  • 4.6 Future Lines
  • 4.6.1 Allanblackia oil
  • 4.6.2 Bitter almond oil
  • 4.6.3 Chaulmoogra oil
  • 4.6.4 Papaya oil
  • 4.6.5 Sal oil
  • 4.6.6 Tung oil
  • 4.6.7 Ucuuba oil
  • Acknowledgments
  • References
  • Chapter 5. Fuel and Physical Properties of Biodiesel Components
  • 5.1 Introduction
  • 5.2 Cetane Number and Exhaust Emissions
  • 5.3 Cold-Flow Properties
  • 5.4 Oxidative Stability
  • 5.4.1 Iodine value
  • 5.5 Viscosity
  • 5.6 Lubricity
  • 5.7 Outlook
  • References
  • Chapter 6. Processing of Vegetable Oils as Biodiesel and Engine Performance
  • 6.1 Introduction
  • 6.2 Processing of Vegetable Oils to Biodiesel
  • 6.2.1 Degumming of vegetable oils
  • 6.2.2 Transesterification of vegetable oils by acid or alkali
  • 6.2.3 Enzymatic transesterification of vegetable oils
  • 6.2.4 Engine performance with esters of vegetable oil
  • 6.3 Engine Performance with Esters of Tallow and Frying Oil
  • References
  • Chapter 7. Ethanol and Methanol as Fuels in Internal Combustion Engines
  • 7.1 Introduction
  • 7.2 Alcohols as Substitute Fuels for IC Engines
  • 7.2.1 Ethanol as an alternative fuel
  • 7.2.2 Production of ethanol
  • 7.3 Distillation of Alcohol
  • 7.4 Properties of Ethanol and Methanol
  • 7.5 Use of Blends
  • 7.6 Performance of Engine Using Ethanol
  • 7.7 Alcohols in CI Engine
  • 7.7.1 Alcohol–diesel fuel solution
  • 7.7.2 Alcohol–diesel fuel emulsions
  • 7.7.3 Spark ignition
  • 7.7.4 Ignition improvers
  • 7.8 Methanol as an Alternate Fuel
  • 7.8.1 Production of methanol
  • 7.8.2 Emission
  • 7.8.3 Fuel system and cold starting
  • 7.8.4 Corrosion
  • 7.8.5 Toxicity of methanol
  • 7.8.6 Formaldehyde emission
  • 7.9 Comparison of Ethanol and Methanol
  • 7.10 Ecosystem Impacts Using Alcohol Fuels
  • 7.10.1 Aquatic system impacts
  • 7.10.2 Terrestrial system impacts
  • 7.10.3 Occupational health impacts
  • 7.10.4 Occupational safety impacts
  • 7.10.5 Socioeconomic impacts
  • 7.10.6 Transportation and infrastructure impacts
  • References
  • Chapter 8. Cracking of Lipids for Fuels and Chemicals
  • 8.1 Introduction
  • 8.2 Thermal Degradation Process
  • 8.2.1 Catalytic cracking (CC)
  • 8.3 Vegetable Oil Fuels/Hydrocarbon Blends
  • 8.3.1 Refitting engines
  • 8.3.2 Tailored conversion products
  • 8.3.3 Feed component in FCC
  • 8.4 Other Metal Oxide Catalysts
  • 8.5 Cracking by In Situ Catalysts
  • 8.6 Conclusion
  • References
  • Chapter 9. Fuel Cells
  • 9.1 Introduction
  • 9.2 Fuel Cell Basics
  • 9.3 Types of Fuel Cells
  • 9.3.1 Polymer electrolyte membrane fuel cells (PEMFCs)
  • 9.3.2 Direct methanol fuel cells (DMFCs)
  • 9.3.3 Alkaline-electrolyte fuel cells (AFCs)
  • 9.3.4 Phosphoric acid fuel cells (PAFCs)
  • 9.3.5 Molten carbonate fuel cells (MCFCs)
  • 9.3.6 Solid oxide fuel cells (SOFCs)
  • 9.3.7 Biofuel cells
  • 9.4 Fuel Cell System
  • 9.4.1 Fuel processor
  • 9.4.2 Air management
  • 9.4.3 Water management
  • 9.4.4 Thermal management
  • 9.4.5 Power-conditioning system
  • 9.5 Fuel Cell Applications
  • 9.6 Conclusion
  • References
  • Appendix
  • Index