CITATION

Chen, Zhi Ning and Luk, Kwai-Man. Antennas for Base Stations in Wireless Communications. US: McGraw-Hill Professional, 2009.

Antennas for Base Stations in Wireless Communications

Published:  June 2009

eISBN: 9780071612890 0071612890 | ISBN: 9780071612883
  • Contents
  • Preface
  • Acknowledgments
  • Introduction
  • Chapter 1. Fundamentals of Antennas
  • 1.1 Basis Parameters and Definitions of Antennas
  • 1.1.1 Input Impedance and Equivalent Circuits
  • 1.1.2 Matching and Bandwidth
  • 1.1.3 Radiation Patterns
  • 1.1.4 Polarization of the Antenna
  • 1.1.5 Antenna Efficiency
  • 1.1.6 Directivity and Gain
  • 1.1.7 Intermodulation
  • 1.2 Important Antennas in This Book
  • 1.2.1 Patch Antennas
  • 1.2.2 Suspended Plate Antennas
  • 1.2.3 Planer Inverted-L/F Antennas
  • 1.2.4 Planer Dipoles/Monopoles
  • 1.3 Basic Measurement Techniques
  • 1.3.1 Measurement Systems for Impedance Matching
  • 1.3.2 Measurement Setups for Far-Zone Fields
  • 1.3.3 Measurement Systems for Intermodulation
  • 1.4 System Calibration
  • 1.5 Remarks
  • References
  • Chapter 2. Base Station Antennas for Mobile Radio Systems
  • 2.1 Operational Requirements
  • 2.2 Antenna Performance Parameters
  • 2.2.1 Control of Antenna Parameters
  • 2.3 The Design of a Practical Base Station Antenna
  • 2.3.1 Methods of Construction
  • 2.3.2 Array Design
  • 2.3.3 Dimensioning the Array
  • 2.3.4 Multiband and Wideband Arrays
  • 2.3.5 Feed Networks
  • 2.3.6 Practical Cost/Performance Issues
  • 2.3.7 Passive Intermodulation Products and Their Avoidance
  • 2.3.8 Use of Computer Simulation
  • 2.3.9 Arrays with Remotely Controlled Electrical Parameters
  • 2.3.10 Antennas for TD-SCDMA Systems
  • 2.3.11 Measurement Techniques for Base Station Antennas
  • 2.3.12 Array Optimization and Fault Diagnosis
  • 2.3.13 RADHAZ
  • 2.3.14 Visual Appearance and Planning Issues
  • 2.3.15 Future Directions
  • References
  • Chapter 3. Antennas for Mobile Communications: CDMA, GSM, and WCDMA
  • 3.1 Introduction
  • 3.1.1 Requirements for Indoor Base Station Antennas
  • 3.1.2 Requirements for Outdoor Base Station Antennas
  • 3.2 Case Studies
  • 3.2.1 An Eight-Element-Shaped Beam Antenna Array
  • 3.2.2 A 90° Linearly Polarized Antenna Array
  • 3.2.3 A Dual-Band Dual-Polarized Array
  • 3.2.4 A Broadband Monopolar Antenna for Indoor Coverage
  • 3.2.5 A Single-Feed Dual-Band Patch Antenna for Indoor Networks
  • 3.3 Conclusion
  • 3.4 Acknowledgment
  • References
  • Chapter 4. Advanced Antennas for Radio Base Stations
  • 4.1 Benefits of Advanced Antennas
  • 4.2 Advanced Antenna Technologies
  • 4.3 Three-Sector Reference System
  • 4.4 Three-Sector Omnidirectional Antenna
  • 4.5 Higher Order Receive Diversity
  • 4.5.1 Field Trial
  • 4.6 Transmit Diversity
  • 4.7 Antenna Beamtilt
  • 4.7.1 Case Study
  • 4.8 Modular High-Gain Antenna
  • 4.8.1 Case Study
  • 4.8.2 Field Trial
  • 4.9 Higher Order Sectorization
  • 4.9.1 Case Study
  • 4.10 Fixed Multibeam Array Antenna
  • 4.10.1 Field Trials
  • 4.10.2 Migration Strategy
  • 4.11 Steered Beam Array Antenna
  • 4.12 Amplifier Integrated Sector Antenna
  • 4.12.1 Case Study
  • 4.13 Amplifier Integrated Multibeam Array Antenna
  • 4.14 Conclusion
  • References
  • Chapter 5. Antenna Issues and Technologies for Enhancing System Capacity
  • 5.1 Introduction
  • 5.1.1 Mobile Communications in Japan
  • 5.1.2 Wireless Access System
  • 5.2 Design Considerations for Antennas from a Systems Point of View
  • 5.3 Case Studies
  • 5.3.1 Slim Antenna
  • 5.3.2 Narrow HPBW Antenna with Parasitic Metal Conductors
  • 5.3.3 SpotCell (Micro-Cell) Antenna
  • 5.3.4 Booster Antenna
  • 5.3.5 Control of Vertical Radiation Pattern
  • 5.4 Conclusion
  • References
  • Chapter 6. New Unidirectional Antennas for Various Wireless Base Stations
  • 6.1 Introduction
  • 6.2 Patch Antennas
  • 6.2.1 Twin L-Shaped Probes Fed Patch Antenna
  • 6.2.2 Meandering-Probe Fed Patch Antenna
  • 6.2.3 Differential-Plate Fed Patch Antenna
  • 6.3 Complementary Antennas Composed of an Electric Dipole and a Magnetic Dipole
  • 6.3.1 Basic Principle
  • 6.3.2 Complementary Antennas Composed of Slot Antenna and Parasitic Wires
  • 6.3.3 Complementary Antennas with a Slot Antenna and a Conical Monopole
  • 6.3.4 New Wideband Unidirectional Antenna Element
  • 6.4 Conclusion
  • 6.5 Acknowledgment
  • References
  • Chapter 7. Antennas for WLAN (WiFi) Applications
  • 7.1 Introduction
  • 7.1.1 WLAN (WiFi)
  • 7.1.2 MIMO in WLANs
  • 7.2 Design Considerations for Antennas
  • 7.2.1 Materials, Fabrication Process, Time to Market, Deployment, and Installation
  • 7.2.2 MIMO Antenna System Design Considerations
  • 7.3 State-of-the-Art Designs
  • 7.3.1 Outdoor Point-to-Point Antennas
  • 7.3.2 Outdoor Point-to-Multiple-Point Antennas
  • 7.3.3 Indoor Point-to-Multiple Point Antennas
  • 7.4 Case Studies
  • 7.4.1 Indoor P2MP Embedded Antenna
  • 7.4.2 Outdoor P2P Antenna Array
  • 7.4.3 Dual-Band Outdoor P2P Antenna Array
  • 7.4.4 Outdoor P2P Diversity Grid Antenna Array
  • 7.4.5 Outdoor/Indoor P2MP HotSpot/HotZone Antenna
  • 7.4.6 MIMO Antenna Array
  • 7.4.7 Three-Element Dual-Band MIMO Antenna
  • 7.5 Conclusion
  • References
  • Chapter 8. Antennas for Wireless Personal Area Network (WPAN) Applications: RFID/UWB Positioning
  • 8.1 Introduction
  • 8.1.1 Wireless Personal Area Network (WPAN)
  • 8.1.2 Radio Frequency Identification (RFID)
  • 8.1.3 Ultra-Wideband (UWB) Positioning
  • 8.2 Antenna Design for RFID Readers
  • 8.2.1 Design Considerations
  • 8.2.2 Case Study
  • 8.3 Antenna Design for Indoor Mono-Station UWB Positioning System
  • 8.3.1 Design Considerations
  • 8.3.2 Case Study: Six-Element Sectored Antenna Arrays
  • 8.4 Conclusion
  • References
  • Index