CITATION

Gross, Frank. Frontiers in Antennas: Next Generation Design & Engineering. US: McGraw-Hill Professional, 2011.

Frontiers in Antennas: Next Generation Design & Engineering

Authors:

Published:  January 2011

eISBN: 9780071637947 007163794X | ISBN: 9780071637930
  • Contents
  • Foreword
  • Preface
  • Acknowledgments
  • 1 Ultra-Wideband Antenna Arrays
  • 1.1 Introduction
  • 1.1.1 Grating Lobes in Periodic Arrays
  • 1.1.2 Dense Wideband Antenna Arrays
  • 1.1.3 Early Aperiodic Design Methods
  • 1.2 Foundations of Multiband and UWB Array Design
  • 1.2.1 Fractal Theory and Its Applications to Antenna Array Design
  • 1.2.2 Aperiodic Tiling Theory
  • 1.2.3 Optimization Techniques
  • 1.3 Modern UWB Array Design Techniques
  • 1.3.1 Polyfractal Arrays
  • 1.3.2 Arrays Based on Raised-Power Series Representations
  • 1.3.3 Arrays Based on Aperiodic Tilings
  • 1.4 UWB Array Design Examples
  • 1.4.1 Linear and Planar Polyfractal Array Examples
  • 1.4.2 Linear RPS Array Design Examples
  • 1.4.3 Planar Array Examples Based on Aperiodic Tilings
  • 1.4.4 Volumetric Array Based on a 3D Aperiodic Tiling
  • 1.5 Full-Wave and Experimental Verification of UWB Designs
  • 1.5.1 Full-Wave Simulation of a Moderately Sized Optimized RPS Array
  • 1.5.2 Full-Wave Simulation of a Planar Optimized Aperiodic Tiling Array
  • 1.5.3 Experimental Verification of Two Linear Polyfractal Arrays
  • References
  • 2 Smart Antennas
  • 2.1 Introduction
  • 2.2 Background on Smart Antennas
  • 2.2.1 Beamforming
  • 2.2.2 Direction-of-Arrival Estimation Techniques
  • 2.3 Evolutionary Signal Processing for Smart Antennas
  • 2.3.1 Description of Algorithms
  • 2.3.2 Adaptive Beamforming and Nulling in Smart Antennas
  • 2.3.3 Extensions to Algorithms for Smart Antenna Implementation
  • 2.4 Wideband Direction-of-Arrival Estimation
  • 2.4.1 Test of Orthogonality of Projected Subspaces (TOPS)
  • 2.4.2 Test of Orthogonality of Frequency Subspaces (TOFS)
  • 2.4.3 Improvements to TOPS
  • 2.5 Knowledge Aided Smart Antennas
  • 2.5.1 Terrain Information
  • 2.5.2 Analysis Tools
  • 2.6 Conclusion
  • Acknowledgments
  • References
  • 3 Vivaldi Antenna Arrays
  • 3.1 Background and General Characteristics
  • 3.1.1 Introduction
  • 3.1.2 Background
  • 3.1.3 Applications
  • 3.1.4 Physical and Mechanical Description
  • 3.1.5 Fabrication
  • 3.1.6 General Discussion of Vivaldi Array Performance
  • 3.2 Design of Vivaldi Arrays
  • 3.2.1 Background
  • 3.2.2 Infinite Array Element Design for Wide Bandwidth
  • 3.2.3 Infinite x Finite Array Truncation Effects
  • 3.2.4 Finite Array Truncation Effects
  • Acknowledgments
  • References
  • 4 Artificial Magnetic Conductors/High-Impedance Surfaces
  • 4.1 Introduction
  • 4.2 Historical Background
  • 4.3 Fundamental Theory, Analysis, and Simulation
  • 4.3.1 Equivalent Circuit Model
  • 4.3.2 Effective Media Model
  • 4.3.3 CEM Simulation of AMC Structures
  • 4.4 New Technologies and Applications
  • 4.4.1 Magnetically Loaded AMC
  • 4.4.2 Reconfigurable AMC
  • 4.4.3 Novel AMC Constructs
  • References
  • 5 Metamaterial Antennas
  • 5.1 Introduction
  • 5.2 Negative Refractive Index (NRI) Metamaterials
  • 5.3 Metamaterial Antennas Based on NRI Concepts
  • 5.3.1 Leaky-Wave Antennas (LWAs)
  • 5.3.2 Miniature and Multiband Patch Antennas
  • 5.3.3 Compact and Low-Profile Monopole Antennas
  • 5.4 High-Gain Antennas Utilizing EBG Defect Modes
  • 5.5 Antenna Miniaturization Using Dispersion Properties of Layered Anisotropic Media
  • 5.5.1 Realizing DBE and MPC Modes via Printed Circuit Emulation of Anisotropy
  • 5.5.2 DBE Antenna Design Using Printed Coupled Loops
  • 5.5.3 Improving DBE Antenna Performance: Coupled Double-Loop (CDL) Antenna
  • 5.5.4 Varactor Diode Loaded CDL Antenna
  • 5.5.5 Microstrip MPC Antenna Design
  • 5.6 Platform/Vehicle Integration of Metamaterial Antennas (Irci, Sertel, Volakis)
  • 5.7 Wideband Metamaterial Antenna Arrays (Tzanidis, Sertel, Volakis)
  • 5.7.1 What Are Metamaterial Antenna Arrays?
  • 5.7.2 Schematic Representation of a Metamaterial Array
  • 5.7.3 An MTM Interweaved Spiral Array with 10:1 BW
  • References
  • 6 Biological Antenna Design Methods
  • 6.1 Introduction
  • 6.2 Genetic Algorithm
  • 6.2.1 Components of a Genetic Algorithm
  • 6.2.2 Successful GA Strategies
  • 6.2.3 Examples
  • 6.3 Genetic Programming
  • 6.4 Efficient Global Optimization
  • 6.4.1 The DACE Stochastic Process Model
  • 6.4.2 Estimation of the Correlation Parameters
  • 6.4.3 Selecting the Next Design Point
  • 6.4.4 Convergence
  • 6.4.5 Comparison of EGO and GA Design Optimization
  • 6.5 Particle Swarm Optimization
  • 6.6 Ant Colony Optimization
  • References
  • 7 Reconfigurable Antennas
  • 7.1 Introduction
  • 7.1.1 Physical Components of a Reconfigurable Antenna
  • 7.1.2 Qualitative Description
  • 7.1.3 Topology
  • 7.2 Analysis
  • 7.2.1 Transmission Line, Network, and Circuit Models
  • 7.2.2 Perturbational Techniques
  • 7.2.3 Variational Techniques
  • 7.3 Overview of Reconfiguration Mechanisms for Antennas
  • 7.3.1 Electromechanical
  • 7.3.2 Ferroic Materials
  • 7.3.3 Solid State Mechanisms
  • 7.3.4 Fluidic Reconfiguration
  • 7.3.5 Switching Speeds and Other Parameters
  • 7.4 Control, Automation, and Applications
  • 7.5 Review
  • 7.6 Final Remarks
  • References
  • 8 Antennas in Medicine: Ingestible Capsule Antennas
  • 8.1 Introduction
  • 8.2 Planar Meandered Dipoles
  • 8.2.1 Balanced Planar Meandered Dipoles—Theory
  • 8.2.2 Balanced Planar Meandered Dipoles—Simulation and Measurement
  • 8.2.3 Offset Planar Meandered Dipoles—Simulation and Measurement
  • 8.3 Antenna Design in Free Space
  • 8.3.1 Conformal Chandelier Meandered Dipole Antenna
  • 8.4 Antenna Design in the Human Body
  • 8.4.1 Tuned Antenna for the Human Body
  • 8.4.2 Effect of Electrical Components on the Antenna Performance
  • 8.5 SAR Analysis and Link Budget Analysis
  • 8.5.1 Simple Human-Body Model
  • 8.5.2 Specific Absorption Rate Analysis
  • 8.5.3 Link Budget Characterization
  • 8.5.4 Link Budget for Free Space—Friis vs. HFSS
  • 8.5.5 Comparison Between Three Wireless Communication Links
  • References
  • 9 Leaky-Wave Antennas
  • 9.1 Introduction
  • 9.1.1 Motivation
  • 9.1.2 Organization of the Chapter
  • 9.1.3 Principle and Characteristics
  • 9.1.4 Classification
  • 9.2 Theory of Leaky Waves
  • 9.2.1 Physics of Leaky-Waves
  • 9.2.2 Radiation from 1D Unidirectional Leaky-Waves
  • 9.2.3 Radiation from 1D Bidirectional Leaky-Waves
  • 9.2.4 Radiation from Periodic Structures
  • 9.2.5 Broadside Radiation
  • 9.2.6 Radiation from 2D Leaky-Waves
  • 9.3 Novel Structures
  • 9.3.1 Full-Space Scanning CRLH Antenna
  • 9.3.2 Full-Space Scanning Phase-Reversal Antenna
  • 9.3.3 Full-Space Scanning Ferrite Waveguide Antenna
  • 9.3.4 Full-Space Scanning Antennas Using Impedance Matching
  • 9.3.5 Conformal CRLH Antenna
  • 9.3.6 Planar Waveguide Antennas
  • 9.3.7 Highly-Directive Wire-Medium Antenna
  • 9.3.8 2D Metal Strip Grating (MSG) Partially Reflective Surface (PRS) Antenna
  • 9.4 Novel Systems
  • 9.4.1 Enhanced-Efficiency Power-Recycling Antennas
  • 9.4.2 Ferrite Waveguide Combined Du/Diplexer Antenna
  • 9.4.3 Active Beam-Shaping Antenna
  • 9.4.4 Distributed Amplifier Antenna
  • 9.4.5 Direction of Arrival Estimator
  • 9.5 Conclusions
  • References
  • 10 Plasma Antennas
  • 10.1 Introduction
  • 10.2 Fundamental Plasma Antenna Theory
  • 10.3 Plasma Antenna Windowing (Foundation of the Smart Plasma Antenna Design)
  • 10.3.1 Theoretical Analysis with Numerical Results
  • 10.3.2 Geometric Construction
  • 10.3.3 Electromagnetic Boundary value Problem
  • 10.3.4 Partial Wave Expansion (Addition Theorem for Hankel Functions)
  • 10.3.5 Setting Up the Matrix Problem
  • 10.3.6 Far-Field Radiation Pattern
  • 10.4 Smart Plasma Antenna Prototype
  • 10.5 Plasma Frequency Selective Surfaces
  • 10.5.1 Introduction
  • 10.5.2 Theoretical Calculations and Numerical Results
  • 10.5.3 Scattering from a Partially-Conducting Cylinder
  • 10.6 Experimental Work
  • 10.7 Other Plasma Antenna Prototypes
  • 10.8 Plasma Antenna Thermal Noise
  • 10.9 Current Work Done to Make Plasma Antennas Rugged
  • 10.10 Latest Developments on Plasma Antennas
  • 10.10.1 Theory for Polarization Effect
  • 10.10.2 Generation of Dense Plasmas at Low Average Power Input by Power Pulsing
  • 10.10.3 Fabry-Perot Resonator for Faster Operation of the Smart Plasma Antenna
  • References
  • 11 Numerical Methods in Antenna Modeling
  • 11.1 Time-Domain Modeling
  • 11.1.1 FDTD and FETD: Basic Considerations
  • 11.1.2 UWB Antenna Problems in Complex Media
  • 11.1.3 PML Absorbing Boundary Condition
  • 11.1.4 A PML-FDTD Algorithm for Dispersive, Inhomo geneous Media
  • 11.1.5 A PML-FETD Algorithm for Dispersive, Inhomogeneous Media
  • 11.1.6 Examples
  • 11.1.7 Dual-Polarized UWB-HFBT Antenna
  • 11.1.8 Time-Domain Modeling of Metamaterials
  • 11.2 Frequency-Domain FEM
  • 11.2.1 Weak Formulation of Time-Harmonic Wave Equation
  • 11.2.2 Geometry Modeling and Finite-Element Representations
  • 11.2.3 Vector Finite Elements
  • 11.2.4 Computation of FEM Matrices
  • 11.2.5 Feed Modeling
  • 11.2.6 Calculation of Radiation Properties of Antennas
  • 11.2.7 An FEM Example: Broadband Vivaldi Antenna
  • 11.3 Conformal Domain Decomposition Method
  • 11.3.1 Notation
  • 11.3.2 Interior Penalty Based Domain Decomposition Method
  • 11.3.3 Discrete Formulation
  • 11.3.4 Numerical Results
  • Reference
  • Index