CITATION

Wu, Banqiu; Kumar, Ajay; and Ramaswami, Sesh. 3D IC Stacking Technology. US: McGraw-Hill Professional, 2011.

3D IC Stacking Technology

Published:  July 2011

eISBN: 9780071741965 0071741968 | ISBN: 9780071741958
  • Cover
  • Contents
  • Contributors
  • Foreword
  • Preface
  • Chapter 1: Introduction to High-Density Through Silicon Stacking Technology
  • 1.1: Background
  • 1.2: 3D Integrated Circuit Technologies
  • 1.2.1: 3D IC Types
  • 1.2.2 : Via-Middle Through Silicon Stacking
  • 1.3 : TSS Drivers and Product Architectures
  • 1.3.1 : Overall Drivers
  • 1.3.2 : Examples of Architectural Uniqueness from Through Silicon Stacking
  • 1.3.3 : Software Simplification Enabled by TSS
  • 1.4 : Markets for TSS
  • 1.5 : TSS Supply Chain Options
  • 1.6 : Challenges for Through Silicon Stacking
  • 1.6.1 : Manufacturing Cost
  • 1.6.2 : Design Tools, Flow, Kits
  • 1.6.3 : Design for Test and ManufacturingTest
  • 1.6.4 : Thermal Hotspots, Mechanical Stress, and Power Delivery
  • 1.6.5 : Fabrication Processes, Materials, and Structures
  • 1.6.6 : Technology Adoption
  • 1.7 : Concluding Remarks
  • References
  • Chapter 2: A Practical Design Eco-System for Heterogeneous 3D IC Products
  • 2.1 : Requirements for 3D Design Eco-System
  • 2.1.1 : 2D Design Experiences
  • 2.1.2 : Causes for Incremental Design Specification Instability in 3D
  • 2.1.3 : Causes for Incremental Process Constraint Instability in 3D
  • 2.1.4 : 3D Design Eco-System
  • 2.2 : PathFinding
  • 2.2.1 : Path Finding Objectives
  • 2.2.2 : Ideal Path Finding Flow
  • 2.2.3 : Path Finding versus Design-Authoring Requirements
  • 2.2.4 : 3D Path Finding and Trade-Off Discussion
  • 2.3 : TechTuning
  • 2.3.1 : TechTuning Objectives
  • 2.3.2 : TechTuning Implementation
  • 2.3.3 : TechTuning Infrastructure
  • 2.4 : Design Authoring
  • 2.4.1 : Design Enablement
  • 2.4.2 : Synthesis and Simulation
  • 2.4.3 : Physical Design, Extraction, and Verification
  • 2.4.4 : Utility Insertion
  • 2.4.5 :Timing and Power Analyses
  • 2.5 : Summary and Conclusions
  • References
  • Chapter 3: Design Automation and TCAD Tool Solutions for Through Silicon Via–Based 3D IC Stack
  • 3.1 : Introduction
  • 3.2 : Planning: 3D System Architecture
  • 3.2.1 : PathFinding
  • 3.2.2 : Gross Thermal Analysis
  • 3.2.3 : Board-Package-IC Co-Design
  • 3.3 : Implementation
  • 3.3.1 : Partitioning
  • 3.3.2 : Floor Planning and Place and Route
  • 3.3.3 : Clock and Power Networks
  • 3.3.4 : Testability
  • 3.3.5 : Visualization
  • 3.4 : Verification and Sign-Off
  • 3.4.1 : Extraction
  • 3.4.2 : Power-Rail Analysis
  • 3.5 : Modeling Thermomechanical-Stress-RelatedIssues in TSV
  • 3.5.1 : New Thermomechanical Stress in a 3D TSV Stack
  • 3.5.2 : TSV Stress-Induced Performance Modulation
  • 3.5.3 : TSV Stress-Induced Reliability Concerns
  • 3.5.4 : TSV Diameter Effects
  • 3.5.5 : Insulation Material Effects
  • 3.5.6 : TSV Material Effects
  • 3.6 : Summary and Conclusions
  • References
  • Chapter 4: Process Integration for TSV Manufacturing
  • 4.1 : Introduction
  • 4.2 : Evolutionary Path to 3D Stacking
  • 4.2.1 : Die Stacking
  • 4.2.2 : Stacked Packages
  • 4.2.3 : Micro-Bumps, Pillar and Re-Distribution Layers
  • 4.2.4 : Interposers
  • 4.2.5 : 3D IC with TSV
  • 4.3 : Stacking Methods
  • 4.4 : TSV Process Overview
  • 4.4.1 : TSV-Related Processing on Full-Thickness Wafers
  • 4.4.2 : TSV-Related Processing on Thinned Wafers
  • 4.5 : TSV Unit Processes
  • 4.5.1 : Lithography
  • 4.5.2 : TSV Etch, Photoresist Strip, and Wet Clean
  • 4.5.3 : Insulator Deposition with Chemical Vapor Deposition
  • 4.5.4 : Metal Barrier/Seed
  • 4.5.5 : Via Fill
  • 4.5.6 : Chemical Mechanical Polish (CMP) of Copper
  • 4.5.7 : Wafer Bonding
  • 4.5.8 : Wafer Thinning for TSV Processes
  • 4.5.9 Metrology and Inspection
  • 4.6 : TSV-Integrated Processing
  • 4.6.1 : Via-First TSVs
  • 4.6.2 : Via-Middle TSVs
  • 4.6.3 : Vias from the Topside
  • 4.6.4 : Via-Last TSVs
  • 4.6.5 : Via Reveal Process (Revealing the Via-Middle TSVs from the Backside)
  • 4.6.6 : Summary
  • References
  • Chapter 5: High-Aspect-Ratio Silicon Etch for TSV
  • 5.1 : Introduction
  • 5.1.1 : History of High-Aspect-Ratio (HAR) Silicon Etch
  • 5.1.2 : HAR Silicon-Etch Applications
  • 5.1.3 : HAR Silicon-Etch Methods
  • 5.2 : Plasma-Etch Fundamentals
  • 5.2.1 : Plasma Principles
  • 5.2.2 : Plasma Sheath
  • 5.2.3 : Mass-Transport Phenomena in Plasmas and TSV Etch
  • 5.2.4 : Chemical Reactions and Kinetics
  • 5.2.5 Plasma Sources
  • 5.2.6 : Plasma Diagnosis
  • 5.3 : Time-Multiplexed Alternating Process
  • 5.3.1 : Etch Rate and Selectivity
  • 5.3.2 : Profile and Surface Roughness
  • 5.3.3 : Aspect-Ratio-Dependent Etch (ARDE)
  • 5.3.4 : Loading Effects
  • 5.3.5 : Micrograss
  • 5.3.6 : Notching
  • 5.4 : Steady-State Etch Process
  • 5.4.1 : Reactive Ion Etch (RIE)
  • 5.4.2 : Etching at Cryogenic Condition
  • 5.4.3 : Simultaneous Etch with Passivation
  • 5.5 : Etch Method and Equipment
  • 5.5.1 : RIE and Early Etchers
  • 5.5.2 : Etchers Using Magnetic Field
  • 5.5.3 : Inductively Coupled Plasma Etchers
  • 5.6 : Summary
  • References
  • Chapter 6: Dielectric Deposition for Through Silicon Vias
  • 6.1 : Introduction to Dielectric Films
  • 6.2 : Key Requirements for Dielectric Process Used in 3D TSV
  • 6.2.1 : Deposition Temperature
  • 6.2.2 : Confomality of Dielectrics
  • 6.2.3 : Hermeticity
  • 6.2.4 : Electric Properties of Dielectrics
  • 6.2.5 : Adhesion
  • 6.3 : Fundamentals of Chemical Vapor Deposition (CVD)
  • 6.4 : CVD Methods for TSV Application
  • 6.4.1 : Atmospheric Pressure Chemical Vapor Deposition (APCVD)
  • 6.4.2 : Low-Pressure CVD (LPCVD)
  • 6.4.3 : Subatmospheric Chemical Vapor Deposition (SACVD)
  • 6.4.4 : Plasma-Enhanced Chemical Vapor Deposition (PECVD)
  • 6.5 : Summary
  • References
  • Chapter 7: Barrier and Seed Deposition
  • 7.1 Introduction
  • 7.2 Material Choices
  • 7.3 Deposition Technologies
  • 7.3.1 Introduction
  • 7.3.2 Degas
  • 7.3.3 Pre-Clean
  • 7.3.4 CVD
  • 7.3.5 ALD
  • 7.3.6 PVD
  • 7.4 PVD Technology Details
  • 7.4.1 Introduction
  • 7.4.2 Ionized Metal Sources and Step Coverage
  • 7.5 TSV Application
  • 7.6 Conclusions
  • Acknowledgments
  • References
  • Chapter 8: Copper Electrodeposition for TSV
  • 8.1 Introduction to Plating
  • 8.1.1 General Aspects
  • 8.1.2 Fundamentals
  • 8.1.3 History
  • 8.2 3D Chip Stacking Using Through Silicon Via
  • 8.2.1 General Overview of 3D Chip Stacking
  • 8.2.2 Plating Needs for 3D Chip Stacking
  • 8.2.3 Through Silicon Via Formation
  • 8.3 Copper Plating for TSV
  • 8.3.1 Advantages of Electrodeposition Processes
  • 8.3.2 Applications of Cu Plating for TSV
  • 8.3.3 Via-Processing Steps
  • 8.3.4 Success Criteria
  • 8.3.5 Key Factors
  • 8.3.6 Plating Chemistries
  • 8.3.7 Growth Mechanism
  • 8.3.8 TSV-Integration Challenges
  • 8.3.9 Equipment for Plating
  • 8.4 Summary
  • Acknowledgments
  • References
  • Chapter 9: Chemical Mechanical Polishing for TSV Applications
  • 9.1 Introduction to CMP
  • 9.2 CMP Fundamentals
  • 9.2.1 Removal Rate and Film Properties
  • 9.2.2 Removal Profile Control with Hardware
  • 9.2.3 Planarization Efficiency
  • 9.2.4 Dishing, Erosion, and Corrosion versus Process Conditions
  • 9.2.5 Post-CMP Cleaning
  • 9.2.6 CMP Evolution and Disruptive Technologies
  • 9.3 Process Requirement for TSV versus Cu Damascene
  • 9.4 CMP Process Control and Metrology
  • 9.5 CMP Process for Different TSV-Integration Flows
  • 9.5.1 Cu CMP for Via-Middle
  • 9.5.2 CMP Process for Via-Last
  • 9.5.3 CMP Process Result for TSV
  • 9.6 Wafer Handling and Wafer-Backside Polishing for Via Reveal
  • 9.6.1 Handling of Bonded TSV Wafers
  • 9.6.2 Direct CMP of Si/Cu After Si Grinding
  • 9.6.3 CMP of Dielectric and Cu Nails After Passivation
  • 9.7 Further CMP-Process Variables and Characterization
  • 9.7.1 Local Pattern-Density Effect
  • 9.7.2 Effect of Cu-Plating Chemistry and Annealing on Cu-CMP Rates
  • 9.7.3 CMP Dishing Response to Different Barrier Metals
  • 9.7.4 Electrical Characterization Post CMP
  • 9.8 Post-CMP Defect Inspection
  • 9.8.1 In-Film Defects Between Cu Seed and ECD Cu
  • 9.8.2 Voids in Cu Vias
  • 9.8.3 CMP Residue
  • 9.8.4 Delamination and Arcing Defects
  • 9.9 Conclusions
  • Acknowledgments
  • References
  • Chapter 10: Temporary and Permanent Bonding
  • 10.1 Introduction to Wafer Bonding for TSV Integration
  • 10.2 Wafer-to-Wafer Alignment and Bonding for TSV Integration
  • 10.2.1 Introduction
  • 10.2.2 Wafer-to-Wafer Alignment
  • 10.2.3 Wafer Bonding for TSV Integration
  • 10.3 Comparison of Stacking Schemes: W2W, C2W, and Advanced C2W
  • 10.4 Temporary Bonding and Debonding for Thin-Wafer Handling and Processing
  • References
  • Chapter 11: Assembly and Test Aspects of TSV Technology
  • 11.1 Introduction
  • 11.2 Process Integration
  • 11.2.1 TSV Wafer Finishing
  • 11.2.2 Assembly
  • 11.2.3 Test Strategies for Advanced SiP and 3D/TSV Packages
  • 11.3 TSV Logistics and Supply-Chain Issues
  • 11.4 TSV Design Considerations for Wafer-Backside Bumping
  • 11.5 Thermal Performance of TSV Packages
  • 11.6 Reliability Considerations for TSV Packages
  • 11.7 Electrical Performance of TSV Packages
  • 11.8 Summary and Conclusions
  • References
  • Index