CITATION

Kiameh, Philip. Power Plant Equipment Operation and Maintenance Guide: Maximizing Efficiency and Profitability. US: McGraw-Hill Education, 2012.

Power Plant Equipment Operation and Maintenance Guide: Maximizing Efficiency and Profitability

Authors:

Published:  2012

ISBN: 9780071772228 0071772227
  • Contents
  • Preface
  • Acknowledgments
  • 1 Gas Turbine Applications in Power Stations, Gas Turbine Protective Systems, and Tests
  • 1.1 Introduction
  • 1.2 Working Cycle
  • 1.2.1 Starting
  • 1.2.2 Shutdown
  • 1.3 Protection
  • 1.4 Black Start
  • 1.5 Routine Tests
  • 1.6 Bibliography
  • 2 Steam Turbine Selection for Combined-Cycle Power Systems
  • 2.1 Abstract
  • 2.2 Introduction
  • 2.3 Steam Turbine Application to Steam and Gas Plants
  • 2.3.1 Steam and Gas Plants Structure
  • 2.3.2 Steam Turbine Exhaust Size Selection
  • 2.3.3 Non-Exhaust Cycle-Steam Conditions
  • 2.3.4 Reheat Cycle Steam Condition
  • 2.4 Steam Turbine Product Structure
  • 2.4.1 Performance
  • 2.4.2 Casing Arrangements
  • 2.4.3 Cogeneration Applications
  • 2.5 Bibliography
  • 3 Steam Turbine Maintenance
  • 3.1 Life Cycle Operating Cost of a Steam Turbine
  • 3.2 Steam Turbine Reliability
  • 3.3 Boroscopic Inspection
  • 3.4 Major Cause of Steam Turbine Repair and Maintenance
  • 3.5 Maintenance Activities
  • 3.6 Advanced Design Features for Steam Turbines
  • 3.7 Bibliography
  • 4 Frequently Asked Questions About Turbine-Generator Balancing, Vibration Analysis, and Maintenance
  • 4.1 Balancing
  • 4.2 Vibration Analysis—Cam Bell Diagram
  • 4.3 Turbine-Generator Maintenance
  • 5 Features Enhancing the Reliability and Maintainability of Steam Turbines
  • 5.1 Steam Turbine Design Philosophy
  • 5.2 Measures of Reliability, Availability, and Maintainability
  • 5.3 Design Attributes Enhancing Reliability
  • 5.3.1 Overall Mechanical Design Approach
  • 5.3.2 Modern Steam Turbine Design Features
  • 5.4 Design Attributes Enhancing Maintainability
  • 5.4.1 Maintainability Features
  • 5.4.2 Maintenance Recommendations
  • 5.5 Cost/Benefit Analysis of High Reliability, Availability, and Maintenance Performance
  • 5.5.1 Reliability, Availability, and Maintainability Value Calculation
  • 5.6 Conclusion
  • 5.7 Bibliography
  • 6 Steam Generators
  • 6.1 Introduction
  • 6.2 The Fire-Tube Boiler
  • 6.3 The Water-Tube Boiler
  • 6.3.1 The Straight-Tube Boiler
  • 6.3.2 The Bent-Tube Boiler
  • 6.4 The Water-Tube Boiler: Recent Developments
  • 6.4.1 The Boiler Walls
  • 6.4.2 The Radiant Boiler
  • 6.5 Water Circulation
  • 6.6 The Steam Drum
  • 6.7 Superheaters and Reheaters
  • 6.7.1 Convection Superheater
  • 6.7.2 Radiant Superheater
  • 6.8 Once-Through Boilers
  • 6.9 Economizers
  • 6.10 Air Preheaters
  • 6.11 Fans
  • 6.11.1 Fan Control
  • 6.11.2 The Stack
  • 6.12 Steam Generator Control
  • 6.12.1 Feedwater and Drum-Level Control
  • 6.12.2 Steam-Pressure Control
  • 6.12.3 Steam-Temperature Control
  • 6.13 Bibliography
  • 7 Boilers (Steam Generators), Heat Exchangers, and Condensers
  • 7.1 Heat Transfer
  • 7.1.1 Steady-State Conduction
  • 7.2 Thermal Conductivities
  • 7.2.1 Conduction Through Cylindrical Walls
  • 7.3 Combination Heat-Transfer Effects
  • 7.4 Convection Heat-Transfer Coefficients
  • 7.4.1 Turbulent Forced-Convection Flow Inside Long Circular Tubes
  • 7.4.2 Streamlined Forced-Convection Flow Inside Tubes (Water and Oils)
  • 7.4.3 Turbulent Forced-Convection Flow Across N Onbaffled Tube Banks with Circular Tubes
  • 7.5 Boiling Liquids and Condensing Vapors
  • 7.6 Heat Exchangers
  • 7.6.1 Shell-and-Tube Heat Exchangers
  • 8 Integrated Gasification Combined Cycles
  • 8.1 Introduction
  • 8.2 IGCC Processes
  • 8.3 IGCC Plant Considerations
  • 8.3.1 Turnkey Cost
  • 8.3.2 Size of IGCC
  • 8.3.3 Output Enhancement
  • 8.4 Emission Reduction
  • 8.4.1 Nitrogen Oxides
  • 8.4.2 Air Pollutants
  • 8.4.3 Mercury
  • 8.4.4 Carbon Dioxide
  • 8.5 Reliability, Availability, and Maintenance
  • 8.6 Bibliography
  • 9 Single-Shaft Combined-Cycle Power Generation Plants
  • 9.1 Introduction
  • 9.2 Performance of Single-Shaft Combined-Cycle Plants
  • 9.3 Environmental Impact
  • 9.4 Equipment Configurations
  • 9.5 Starting Systems
  • 9.6 Auxiliary Steam Supply
  • 9.7 Plant Arrangement
  • 9.8 Maintenance
  • 9.9 Advantages of Single-Shaft Combined-Cycle Plants
  • 9.10 Bibliography
  • 10 Selection of the Best Power Enhancement Option for Combined-Cycle Plants
  • 10.1 Plant Description
  • 10.2 Evaluation of Inlet-Air Pre-Cooling Option
  • 10.3 Evaluation of Inlet-Air Chilling Option
  • 10.4 Evaluation of Absorption Chilling System
  • 10.5 Evaluation of the Steam and Water Injection Options
  • 10.6 Evaluation of Supplementary Firing in HRSG Option
  • 10.7 Comparison of All the Power Enhancement Options
  • 10.8 Bibliography
  • 11 Economics of Combined-Cycle and Cogeneration Plants
  • 11.1 Introduction
  • 11.2 Natural Gas Prices
  • 11.3 Economic Growth
  • 11.4 Financial Analysis
  • 11.5 Base Case
  • 11.6 Combined-Cycle Configuration
  • 11.7 Capital Cost
  • 11.8 Operating and Maintenance Cost
  • 11.9 Economic Evaluation of Different Combined-Cycle Configurations
  • 11.10 Electricity Purchase Rate
  • 11.11 Economic Consideration
  • 11.12 Conclusions
  • 11.13 Bibliography
  • 11.14 Appendix: Definitions of Terms Used in the Tables
  • 11.15 Appendix: Financial Analysis of the Different Configurations of Combined-Cycle Plants
  • 12 Wind Power Turbine Generators—Brushless Double-Feed Generators
  • 12.1 Introduction
  • 12.2 Basic System Configuration
  • 12.3 Equivalent Circuit for the Brushless Double-Fed Machine
  • 12.4 Parameter Extraction
  • 12.5 Generator Operation
  • 12.6 Converter Rating
  • 12.7 Machine Control
  • 12.8 Conclusions
  • 12.9 Bibliography
  • 13 Gas Laws and Compression Principles
  • 13.1 Introduction
  • 13.2 Symbols
  • 13.2.1 Compressor Operation
  • 13.3 First Law of Thermodynamics
  • 13.4 Second Law of Thermodynamics
  • 13.4.1 Ideal or Perfect Gas Laws
  • 13.4.2 Property Relationships
  • 13.4.3 Vapor Pressure
  • 13.4.4 Partial Pressures
  • 13.4.5 Critical Conditions
  • 13.4.6 Gas Mixtures
  • 13.4.7 The Mole
  • 13.4.8 Volume Percent of Constituents
  • 13.4.9 Molecular Weight of a Mixture
  • 13.4.10 Specific Gravity and Partial Pressure
  • 13.4.11 Specific Heats
  • 13.4.12 Pseudo-Critical Conditions and Compressibility
  • 13.4.13 Weight-Basis Item
  • 13.4.14 Compression Cycles
  • 13.4.15 Compressor Polytropic Efficiency
  • 13.4.16 Compressor Power Requirement
  • 13.4.17 Compressibility Correction
  • 13.4.18 Multiple Staging
  • 13.4.19 Compressor Volumetric Flow Rate
  • 13.4.20 Cylinder Clearance and Volumetric Efficiency
  • 13.4.21 Cylinder Clearance and Compression Efficiency
  • 13.5 Bibliography
  • 13.6 Appendix: List of Symbols
  • 14 Compressor Types and Applications
  • 14.1 Introduction
  • 14.2 Positive Displacement Compressors
  • 14.2.1 Rotary Compressors
  • 14.2.2 Reciprocating Compressors
  • 14.3 Dynamic Compressors
  • 14.3.1 Centrifugal Compressors
  • 14.3.2 Axial Flow Compressors
  • 14.4 Bibliography
  • 15 Compressors
  • 15.1 Compressor Types
  • 15.2 Compressor Operation
  • 15.3 Gas Laws
  • 15.4 Compressor Performance Measurement
  • 15.4.1 Inlet Conditions
  • 15.4.2 Compressor Performance
  • 15.4.3 Energy Available for Recovery
  • 15.4.4 Positive Displacement Compressors
  • 15.4.5 Reciprocating Compressors
  • 15.4.6 Trunk Piston Compressors
  • 15.4.7 Sliding Crosshead Piston Compressors
  • 15.4.8 Diaphragm Compressors
  • 15.4.9 Bellows Compressors
  • 15.4.10 Rotary Compressors
  • 15.4.11 Rotary Screw Compressors
  • 15.4.12 Lobe-Type Air Compressors
  • 15.4.13 Sliding Vane Compressors
  • 15.4.14 Liquid Ring Compressors
  • 15.4.15 Dynamic Compressors
  • 15.4.16 Centrifugal Compressors
  • 15.4.17 Axial Compressors
  • 15.4.18 Air Receivers
  • 15.5 Compressor Control
  • 15.6 Compressor Unloading System
  • 15.7 Intercooler and Aftercoolers
  • 15.8 Filters and Air Intake Screens
  • 15.9 Preventive Maintenance and Housekeeping
  • 15.10 Bibliography
  • 16 Performance of Positive Displacement Compressors
  • 16.1 Compressor Performance
  • 16.1.1 Positive Displacement Compressors
  • 16.1.2 Reciprocating Compressor Rating
  • 16.1.3 Reciprocating Compressor Sizing
  • 16.1.4 Capacity Control
  • 16.1.5 Compressor Performance
  • 16.2 Reciprocating Compressors
  • 16.2.1 Compressor Valves
  • 16.2.2 Reciprocating Compressors Leakage
  • 16.2.3 Screw Compressors Leakage
  • 16.3 Bibliography
  • 17 Reciprocating Compressors
  • 17.1 Introduction
  • 17.2 Crankshaft Design
  • 17.3 Bearings and Lubrication Systems
  • 17.4 Connecting Rods
  • 17.5 Crossheads
  • 17.6 Frames and Cylinders
  • 17.7 Compressor Cooling
  • 17.8 Pistons
  • 17.9 Piston and Rider Rings
  • 17.10 Valves
  • 17.11 Piston Rods
  • 17.12 Packings
  • 17.13 Cylinder Lubrication
  • 17.14 Distance Pieces
  • 17.15 Bibliography
  • 18 Reciprocating Air Compressors Troubleshooting and Maintenance
  • 18.1 Introduction
  • 18.2 Location
  • 18.3 Foundation
  • 18.4 Air Filters and Suction Lines
  • 18.5 Air Receiver Location and Capacity
  • 18.6 Starting a New Compressor
  • 18.7 Lubrication
  • 18.8 Non-Lubricated Cylinders
  • 18.9 Valves
  • 18.10 Piston Rings
  • 18.11 Intercoolers and Aftercoolers
  • 18.12 Cleaning
  • 18.13 Packing
  • 18.14 Bibliography
  • 19 Diaphragm Compressors
  • 19.1 Introduction
  • 19.2 Theory of Operation
  • 19.3 Compressor Design
  • 19.4 Materials of Construction
  • 19.5 Accessories
  • 19.6 Cleaning and Testing
  • 19.7 Applications
  • 19.7.1 Automotive Air Bag Filling
  • 19.7.2 Petrochemical Industries
  • 19.8 Limitations
  • 19.9 Installation and Maintenance
  • 19.10 Diaphragm Compressor Specification
  • 19.11 Bibliography
  • 20 Rotary Screw Compressors and Filter Separators
  • 20.1 Twin-Screw Machines
  • 20.1.1 Compressor Operation
  • 20.1.2 Applications of Rotary Screw Compressors
  • 20.1.3 Dry and Liquid Injected Compressors
  • 20.1.4 Operating Principles
  • 20.1.5 Flow Calculation
  • 20.1.6 Power Calculation
  • 20.1.7 Temperature Rise
  • 20.1.8 Capacity Control
  • 20.1.9 Mechanical Construction
  • 20.1.10 Industry Experience
  • 20.1.11 Maintenance History
  • 20.1.12 Performance Summary
  • 20.2 Oil-Flooded Single-Screw Compressors
  • 20.3 Selection of Modern Reverse-Flow Filter Separators
  • 20.3.1 Conventional Filter Separators and Self-Cleaning Coalescers
  • 20.3.2 Removal Efficiencies
  • 20.3.3 Filter Quality
  • 20.3.4 Selection of the Most Suitable Gas Filtration Equipment
  • 20.3.5 Evaluation of the Proposed Filtration Configurations
  • 20.3.6 Life-Cycle-Cost Calculations
  • 20.4 Conclusions
  • 20.5 Bibliography
  • 20.6 Appendix: Coke Fuel
  • 20.6.1 Introduction
  • 20.6.2 Properties and Usage
  • 20.6.3 Other Coking Processes
  • 20.6.4 Bibliography
  • 21 Straight Lobe Compressors
  • 21.1 Applications
  • 21.1.1 Operating Characteristics
  • 21.2 Operating Principle
  • 21.3 Pulsation Characteristics
  • 21.4 Noise Characteristics
  • 21.5 Torque Characteristics
  • 21.6 Construction
  • 21.6.1 Rotors
  • 21.6.2 Casing
  • 21.6.3 Timing Gears
  • 21.6.4 Bearings
  • 21.7 Staging
  • 21.7.1 Higher Compression Ratios
  • 21.7.2 Power Reduction
  • 21.8 Installation
  • 21.9 Bibliography
  • 22 Recent Developments in Separating Liquid from Gases
  • 22.1 Introduction
  • 22.2 Removal Mechanisms
  • 22.3 Liquid/Gas Separation Technologies
  • 22.3.1 Gravity Separators
  • 22.3.2 Centrifugal Separators
  • 22.3.3 Mist Eliminators
  • 22.3.4 Filter Vane Separators
  • 22.3.5 Liquid/Gas Coalescers
  • 22.3.6 Selection of Liquid/Gas Separation Equipment
  • 22.4 Formation of Fine Aerosols
  • 22.5 Ratings and Sizing of Separation Equipment
  • 22.6 Bibliography
  • 23 Dynamic Compressors Technology
  • 23.1 Introduction
  • 23.2 Centrifugal Compressor Overview
  • 23.3 Axial Compressors Overview
  • 23.4 Bibliography
  • 24 Simplified Equations for Determining the Performance of Dynamic Compressors
  • 24.1 Nonoverloading Characteristics of Centrifugal Compressors
  • 24.2 Stability
  • 24.3 Speedy Change
  • 24.4 Compressor Drive
  • 24.5 Calculations
  • 24.6 Bibliography
  • 25 Centrifugal Compressors—Components, Performance Characteristics, Balancing, Surge Prevention Systems, and Testing
  • 25.1 Introduction
  • 25.2 Casing Configuration
  • 25.3 Construction Features
  • 25.3.1 Diaphragms
  • 25.3.2 Interstage Seals
  • 25.3.3 Balance Piston Seal
  • 25.3.4 Impeller Thrust
  • 25.4 Performance Characteristics
  • 25.4.1 Slope of the Centrifugal Compressor Head Curve
  • 25.4.2 Stonewall
  • 25.4.3 Surge
  • 25.4.4 Off-Design Operation
  • 25.5 Rotor Dynamics
  • 25.6 Rotor Balancing
  • 25.7 Surge Prevention Systems
  • 25.8 Surge Identification
  • 25.9 Liquid Entrainment
  • 25.10 Instrumentation
  • 25.11 Cleaning Centrifugal Compressors
  • 25.12 Bibliography
  • 25.13 Appendix: Boundary Layer
  • 25.13.1 Definition
  • 25.13.2 Description of the Boundary Layer
  • 25.13.3 Separation: Wake
  • 25.13.4 Bibliography
  • 26 Compressor Auxiliaries, Off-Design Performance, Stall, and Surge
  • 26.1 Introduction
  • 26.2 Compressor Auxiliaries
  • 26.3 Compressor Off-Design Performance
  • 26.3.1 Low Rotational Speeds
  • 26.3.2 High Rotational Speeds
  • 26.4 Performance Degradation
  • 26.5 Bibliography
  • 27 Dynamic Compressors Performance
  • 27.1 Description of a Centrifugal Compressor
  • 27.2 Centrifugal Compressor Types
  • 27.2.1 Compressors with Horizontally Split Casings
  • 27.2.2 Centrifugal Compressors with Vertically Split Casings
  • 27.2.3 Compressors with Bell Casings
  • 27.2.4 Pipeline Compressors
  • 27.2.5 SR Compressors
  • 27.3 Performance Limitations
  • 27.3.1 Surge Limit
  • 27.3.2 Stonewall
  • 27.3.3 Prevention of Surge
  • 27.3.4 Anti-Surge Control Systems
  • 27.4 Bibliography
  • 28 Compressor Seal Systems
  • 28.1 Introduction
  • 28.2 The Supply System
  • 28.3 The Seal Housing System
  • 28.4 The Atmospheric Draining System
  • 28.5 The Seal Leakage System
  • 28.6 Gas Seals
  • 28.7 Liquid Seals
  • 28.8 Liquid Bushing Seals
  • 28.9 Contact Seals
  • 28.10 Restricted Bushing Seals
  • 28.11 Seal Supply Systems
  • 28.11.1 Flow Through the Gas Side Contact Seal
  • 28.11.2 Flow Through the Atmospheric Side Bushing Seal
  • 28.11.3 Flow Through the Seal Chamber
  • 28.12 Seal Liquid Leakage System
  • 28.13 Bibliography
  • 29 Dry Seals, Advanced Sealing Mechanisms, and Magnetic Bearings
  • 29.1 Introduction
  • 29.2 Background
  • 29.3 Dry Seals
  • 29.3.1 Operating Principles
  • 29.3.2 Operating Experience
  • 29.3.3 Problems and Solutions
  • 29.3.4 Upgrade Developments of Dry Seals
  • 29.3.5 Prevention of Dry Gas Seal Failures by Gas Conditioning
  • 29.4 Magnetic Bearings
  • 29.4.1 Operating Principles
  • 29.4.2 Operating Experience and Benefits
  • 29.4.3 Problems and Solutions
  • 29.4.4 Development Efforts
  • 29.5 Thrust-Reducing Seals
  • 29.6 Integrated Design
  • 29.7 Bibliography
  • 30 Compressor System Calculations
  • 30.1 Calculations of Air Leaks from Compressed-Air Systems
  • 30.1.1 Annual Cost of Air Leakage
  • 30.2 Centrifugal Compressor Power Requirement
  • 30.2.1 Compressor Selection
  • 30.2.2 Selection of Compressor Drive
  • 30.2.3 Selection of Air Distribution System
  • 30.2.4 Water Cooling Requirements for Compressors
  • 30.2.5 Variation of Compressor Delivery with Inlet Air Temperature
  • 30.2.6 Sizing of Compressor System Components
  • 30.2.7 Calculation of Receiver Pump-Up Time
  • 30.3 Bibliography
  • 31 Pumps
  • 31.1 Introduction
  • 31.2 Centrifugal Pumps
  • 31.2.1 Theory of Operation of a Centrifugal Pump
  • 31.2.2 Casings and Diffusers
  • 31.2.3 Radial Thrust
  • 31.2.4 Hydrostatic Pressure Tests
  • 31.2.5 Impeller
  • 31.2.6 Axial Thrust
  • 31.2.7 Axial Thrust in Multistage Pumps
  • 31.2.8 Hydraulic Balancing Devices
  • 31.3 Mechanical Seals
  • 31.4 Bearings
  • 31.5 Couplings
  • 31.6 Bedplates
  • 31.7 Minimum Flow Requirement
  • 31.8 Centrifugal Pumps: General Performance Characteristics
  • 31.9 Cavitation
  • 31.10 Net Positive Suction Head
  • 31.11 Maintenance Recommended on Centrifugal Pumps
  • 31.12 Recommended Pump Maintenance
  • 31.13 Vibration Analysis
  • 31.14 Bibliography
  • 32 Centrifugal Pump Mechanical Seal
  • 32.1 Introduction
  • 32.2 Basic Components
  • 32.2.1 Seal Balance
  • 32.2.2 Face Pressure
  • 32.2.3 Pressure-Velocity
  • 32.2.4 Power Consumption
  • 32.2.5 Temperature Control
  • 32.2.6 Seal Lubrication/Leakage
  • 33 Positive Displacement Pumps
  • 33.1 Reciprocating Pumps
  • 33.1.1 Piston Pumps
  • 33.1.2 Plunger Pumps
  • 33.1.3 Diaphragm Pumps
  • 33.2 Rotary Pumps
  • 33.2.1 Gear Pumps
  • 33.2.2 Screw Pumps
  • 33.2.3 Two- or Three-Lobe Pumps
  • 33.2.4 Cam Pumps
  • 33.2.5 Vane Pumps
  • 33.3 Bibliography
  • 34 Diaphragm Pumps
  • 34.1 Introduction
  • 34.2 Mechanically Driven Diaphragm Pumps
  • 34.3 Hydraulically Actuated Diaphragm Pumps
  • 34.4 Pneumatically Powered Diaphragm Pumps
  • 34.5 Materials of Construction
  • 34.5.1 Advantages and Limitations
  • 34.5.2 Limitations of Diaphragm Pumps
  • 34.5.3 Advantages of Diaphragm Pumps
  • 34.6 Bibliography
  • 35 Canned Motor Pumps
  • 35.1 Canned Motor Pumps Design and Applications
  • 35.2 Seal-Less Pump Motors
  • 35.3 Bibliography
  • 36 Troubleshooting of Pumps
  • 36.1 Pump Maintenance
  • 36.1.1 Daily Observations of Pump Operation
  • 36.1.2 Semiannual Inspection
  • 36.1.3 Annual Inspection
  • 36.1.4 Complete Overhaul
  • 36.1.5 Spare and Repair Parts
  • 36.1.6 Record of Inspections and Repairs
  • 36.1.7 Diagnoses of Pump Troubles
  • 36.2 Troubleshooting of Centrifugal Pumps
  • 36.3 Troubleshooting of Rotary Pumps
  • 36.4 Troubleshooting of Reciprocating Pumps
  • 36.5 Troubleshooting of Steam Pumps
  • 36.6 Vibration Diagnostics
  • 36.6.1 Analysis Symptoms
  • 36.6.2 Impeller Unbalance
  • 36.6.3 Hydraulic Unbalance
  • 36.7 Bibliography
  • 37 Water Hammer
  • 37.1 Introduction
  • 37.2 Nomenclature
  • 37.3 Basic Assumptions
  • 37.4 Effects of Water Hammer in High- and Low-Head Pumping Systems
  • 37.4.1 Magnitude of the Pulse
  • 37.4.2 Possible Causes of Water Hammer
  • 37.4.3 Mitigating Measures to Water Hammer
  • 37.4.4 Applications of Water Hammer
  • 37.5 Power Failure at Pump Motors
  • 37.5.1 Pumps with No Valves at the Pump
  • 37.5.2 Pumps Equipped with Check Valves
  • 37.5.3 Controlled Valve Closure
  • 37.5.4 Surge Suppressors
  • 37.5.5 Water Column Separation
  • 37.5.6 Quick-Opening, Slow-Closing Valves
  • 37.5.7 One-Way Surge Tanks
  • 37.5.8 Air Chambers
  • 37.5.9 Surge Tanks
  • 37.5.10 Nonreverse Ratchets
  • 37.6 Normal Pump Shutdown
  • 37.7 Water Hammer Example
  • 37.8 Steam Hammer
  • 37.9 Bibliography
  • 38 Selection and Procurement of Pumps
  • 38.1 Introduction
  • 38.2 Engineering of System Requirements
  • 38.2.1 Fluid Type
  • 38.2.2 System-Head Curves
  • 38.3 Alternate Modes of Operation
  • 38.4 Margins
  • 38.5 Wear
  • 38.6 Future System Changes
  • 38.7 Selection of Pump and Driver
  • 38.7.1 Pump Characteristics
  • 38.7.2 Code Requirements
  • 38.7.3 Fluid Characteristics
  • 38.7.4 Pump Materials
  • 38.7.5 Driver Type
  • 38.8 Pump Specifications
  • 38.8.1 Specification Types
  • 38.8.2 Data Sheet
  • 38.8.3 Codes and Standards
  • 38.8.4 Bidding Documents
  • 38.8.5 Technical Specification
  • 38.8.6 Commercial Terms
  • 38.9 Special Considerations
  • 38.9.1 Performance Testing
  • 38.9.2 Pump Drivers
  • 38.9.3 Special Control Requirements
  • 38.9.4 Drawing and Data Requirements Form
  • 38.9.5 Quality Assurance and Quality Control
  • 38.10 Bidding and Negotiation
  • 38.10.1 Public and Private Sector
  • 38.10.2 Bid List
  • 38.10.3 Evaluation of Bids
  • 38.10.4 Cost
  • 38.10.5 Efficiency
  • 38.10.6 Economic Life
  • 38.10.7 Spare Parts
  • 38.10.8 Guarantee/Warranty
  • 38.10.9 Sample Bid Evaluation
  • 38.11 Bibliography
  • 39 Pumping System Calculations
  • 39.1 Analysis of Pumps Installed in Series
  • 39.2 Analysis of Pumps Installed in Parallel
  • 39.3 Selection of Pump Driver Speed
  • 39.4 Affinity Laws for Centrifugal Pumps
  • 39.5 Centrifugal Pump Selection Using Similarity or Affinity Laws
  • 39.6 Determination of Centrifugal Pump Capacity and Efficiency
  • 39.7 Selection of the Best Operating Speed for a Centrifugal Pump
  • 39.8 Calculate the Total Head of the Pump
  • 39.9 Pump Selection Procedure
  • 39.9.1 Draw the Proposed Piping Layout of the Pumping System
  • 39.9.2 Determine the Required Pump Capacity
  • 39.9.3 Determine the Total Head on the Pump
  • 39.9.4 Obtain the Physical and Chemical Data of the Liquid Being Pumped
  • 39.9.5 Select the Category and Type of Pump
  • 39.9.6 Evaluate the Selected Pump
  • 39.10 Bibliography
  • 40 Bearings
  • 40.1 Types of Bearings
  • 40.1.1 Ball and Roller Bearings
  • 40.2 Stresses During Rolling Contact
  • 40.3 Statistical Nature of Bearing Life
  • 40.4 Materials and Finish
  • 40.5 Sizes of Bearings
  • 40.6 Types of Rolling Bearings
  • 40.6.1 Thrust Bearings
  • 41 Lubrication
  • 41.1 The Viscosity of Lubricants
  • 41.1.1 Viscosity Units
  • 41.1.2 Significance of Viscosity
  • 41.1.3 Flow Through Pipes
  • 41.2 Variation of Viscosity with Temperature and Pressure
  • 41.2.1 Temperature Effect
  • 41.2.2 Viscosity Index
  • 41.2.3 Effect of Pressure on Viscosity
  • 41.3 Non-Newtonian Fluids
  • 41.3.1 Greases
  • 41.3.2 VI-Improved Oils
  • 41.3.3 Oils at Low Temperatures
  • 41.4 Variation of Lubricant Viscosity with Use
  • 41.4.1 Oxidation Reactions
  • 41.4.2 Physical Reactions
  • 41.5 Housing and Lubrication
  • 41.6 Lubrication of Antifriction Bearings
  • 41.7 Bibliography
  • 42 Used Oil Analysis—A Vital Part of Maintenance
  • 42.1 Proper Lube Oil Sampling Technique
  • 42.1.1 Test Description and Significance
  • 42.1.2 Visual and Sensory Inspections
  • 42.1.3 Chemical and Physical Tests
  • 42.2 Summary
  • 42.3 Bibliography
  • 43 Vibration Analysis
  • 43.1 The Application of Sine Waves to Vibration
  • 43.1.1 Multimass Systems
  • 43.1.2 Resonance
  • 43.1.3 Logarithms and Decibels
  • 43.1.4 The Use of Filtering
  • 43.1.5 Vibration Instrumentation
  • 43.1.6 Transducer Selection
  • 43.1.7 Machinery Example
  • 43.1.8 Vibration Analysis
  • 43.1.9 Vibration Causes
  • 43.1.10 Forcing Frequency Causes
  • 43.1.11 Vibration Severity
  • 43.2 Appendix: A Case History (Condensate Pump Misalignment)
  • 43.2.1 Problem
  • 43.2.2 Test Data and Observations
  • 43.2.3 Corrective Actions
  • 43.2.4 Final Results
  • 43.2.5 Conclusion
  • Index