CITATION

Voutchkov, Nikolay. Desalination Engineering: Planning and Design. US: McGraw-Hill Professional, 2012.

Desalination Engineering: Planning and Design

Published:  December 2012

eISBN: 9780071777162 0071777164 | ISBN: 9780071777155
  • Cover
  • About the Author
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • Abbreviations
  • Chapter 1: Desalination Engineering: An Overview
  • 1.1 Introduction
  • 1.2 Terminology
  • 1.3 Overview of Desalination Technologies
  • 1.4 Thermal Desalination
  • 1.4.1 Overview
  • 1.4.2 Multistage Flash Distillation
  • 1.4.3 Multiple-Effect Distillation
  • 1.4.4 Vapor Compression
  • 1.5 Membrane Desalination
  • 1.5.1 Overview
  • 1.5.2 Electrodialysis
  • 1.5.3 Reverse Osmosis
  • 1.6 References
  • Chapter 2: Source Water Quality Characterization
  • 2.1 Introduction
  • 2.2 Watershed Sanitary Survey
  • 2.3 Assessment of the Pathogen Content of Source Water
  • 2.4 Overview of Source Water Constituents
  • 2.5 Minerals
  • 2.5.1 Mineral Content of Seawater
  • 2.5.2 Mineral Content of Brackish Water
  • 2.6 Dissolved Gases
  • 2.7 Particulate Membrane Foulants
  • 2.7.1 Description
  • 2.7.2 Parameters and Measurement Methods
  • 2.7.3 Threshold Levels of Particulate Foulants
  • 2.8 Colloidal Membrane Foulants
  • 2.8.1 Description
  • 2.8.2 Parameters and Measurement Methods
  • 2.8.3 Threshold Levels of Colloidal Foulants
  • 2.9 Mineral Membrane-Scaling Foulants
  • 2.9.1 Description
  • 2.9.2 Parameters and Measurement Methods
  • 2.9.3 Threshold Levels of Mineral Foulants
  • 2.10 Natural Organic Foulants
  • 2.10.1 Description
  • 2.10.2 Parameters and Measurement Methods
  • 2.10.3 Threshold Levels of Organic Foulants
  • 2.11 Microbial Foulants
  • 2.11.1 Description
  • 2.11.2 Parameters and Measurement Methods
  • 2.11.3 Threshold Levels of Microbial Foulants
  • 2.12 Combined Impacts of Various Types of Foulants
  • 2.13 Membrane Fouling Diagnostics
  • 2.13.1 Laboratory Autopsy of Biofouled Membranes
  • 2.14 Water Quality Analysis for RO Desalination
  • 2.15 References
  • Chapter 3: Fundamentals of Reverse Osmosis Desalination
  • 3.1 Introduction
  • 3.2 Reverse Osmosis Membrane Structures, and Materials
  • 3.2.1 Conventional Thin-Film Composite Membrane Structure
  • 3.2.2 Thin-Film Nanocomposite Membrane Structure
  • 3.2.3 Cellulose Acetate Membranes
  • 3.2.4 Aromatic Polyamide Membranes
  • 3.3 Spiral-Wound, Hollow-Fiber, and Flat-Sheet RO Membrane Elements
  • 3.3.1 Spiral-Wound RO Membrane Elements
  • 3.3.2 Hollow-Fiber RO Membrane Elements
  • 3.3.3 Flat-Sheet RO Membrane Elements
  • 3.4 Reverse Osmosis System—General Description
  • 3.4.1 Configuration
  • 3.4.2 Reverse Osmosis Process Parameters
  • 3.5 Models for Water and Salt Transport through Membranes
  • 3.5.1 Overview
  • 3.5.2 Nonporous Solution-Diffusion Transport Model
  • 3.6 Membrane Performance Factors and Considerations
  • 3.6.1 Concentration Polarization
  • 3.6.2 Membrane Fouling
  • 3.6.3 Flux Distribution within Membrane Vessels
  • 3.6.4 Effect of Salinity on Membrane Performance
  • 3.6.5 Effect of Recovery on Membrane Performance
  • 3.6.6 Effect of Temperature on Membrane Performance
  • 3.6.7 Effect of Feed Pressure on Membrane Performance
  • 3.6.8 Effect of Permeate Back Pressure on Membrane Performance
  • 3.7 Key Membrane Desalination Plant Components
  • 3.7.1 General Overview
  • 3.7.2 Plant Intake
  • 3.7.3 Pretreatment
  • 3.7.4 Reverse Osmosis Separation System
  • 3.7.5 Post-Treatment
  • 3.7.6 Desalination Plant Discharge Management
  • 3.8 References
  • Chapter 4: Planning Considerations
  • 4.1 Introduction
  • 4.2 Plant Service Area, Capacity, and Site
  • 4.2.1 Service Area
  • 4.2.2 Plant Capacity
  • 4.2.3 Plant Site
  • 4.3 Intake Type and Location
  • 4.3.1 Brackish Water Intake Planning Considerations
  • 4.3.2 Seawater Intake Planning Considerations
  • 4.4 Source Water Quality
  • 4.5 Product Water Quality
  • 4.5.1 Water Quality of SWRO Desalination Plants
  • 4.5.2 Water Quality of BWRO Desalination Plants
  • 4.5.3 Disinfection By-Products in Desalinated Water
  • 4.5.4 Blending of Desalinated Water in the Distribution System
  • 4.5.5 Wastewater Treatment and Water Reuse Considerations
  • 4.5.6 Selection of Target Product Water Quality
  • 4.6 Plant Discharge
  • 4.6.1 Concentrate
  • 4.6.2 Spent Filter Backwash Water
  • 4.6.3 Spent Membrane Cleaning Chemicals
  • 4.7 Conceptual Plant Design
  • 4.7.1 Scope
  • 4.7.2 Selection of Key Treatment Processes
  • 4.7.3 Equipment Selection
  • 4.7.4 Treatment Process Validation and Optimization by Pilot Testing
  • 4.7.5 Plant Configuration and Layout
  • 4.7.6 Energy Use
  • 4.7.7 Chemicals Used in Desalination Plants
  • 4.8 Project Implementation Schedule and Phasing
  • 4.8.1 Project Duration
  • 4.8.2 Project Phasing
  • 4.9 Project Economics
  • 4.9.1 Effect of Plant Size on Project Costs
  • 4.9.2 Concentrate Disposal and Plant Costs
  • 4.9.3 Energy Use and Project Costs
  • 4.9.4 Project Risks and Costs
  • 4.10 Contractor Procurement for Project Implementation
  • 4.10.1 Design-Bid-Build
  • 4.10.2 Design-Build-Operate
  • 4.10.3 Build-Own-Operate-Transfer
  • 4.11 Project Funding
  • 4.12 References
  • Chapter 5: Environmental Review and Permitting
  • 5.1 Introduction
  • 5.2 Intakes—Environmental Impacts and Mitigation Measures
  • 5.2.1 Open Intakes
  • 5.2.2 Subsurface Intakes
  • 5.3 Discharge—Environmental Challenges and Solutions
  • 5.3.1 Salinity Increase beyond the Tolerance Thresholds of Aquatic Species
  • 5.3.2 Concentration of Source Water Constituents to Harmful Levels
  • 5.3.3 Discharge Discoloration and Low Oxygen Content
  • 5.4 Greenhouse Gas Emissions Associated with Plant Operations
  • 5.4.1 Introduction
  • 5.4.2 Greenhouse Gas Emission Management
  • 5.5 Traffic, Noise, and Other Auxiliary Impacts
  • 5.6 Framework of Environmental Impact Assessment
  • 5.6.1 Introduction
  • 5.6.2 Project EIA Scoping
  • 5.6.3 Project Definition
  • 5.6.4 Environmental Analysis
  • 5.6.5 Identification of Significant Environmental Impacts and Development of Mitigation Measures
  • 5.7 Overview of the Desalination Project Permitting Process
  • 5.8 Permits Related to Source Water Intake
  • 5.8.1 Key Permitting Issues
  • 5.8.2 Permitting Support Studies
  • 5.9 Permits Related to Plant Discharge
  • 5.9.1 Key Permitting Issues
  • 5.9.2 Permitting Support Studies
  • 5.10 Permits Related to Product Water
  • 5.10.1 Key Permitting Issues
  • 5.10.2 Permitting Support Studies
  • 5.11 Other Permits
  • 5.12 References
  • Chapter 6: Intakes for Source Water Collection
  • 6.1 Introduction
  • 6.2 Open Intakes
  • 6.2.1 Types and Configurations
  • 6.2.2 Selection of Open Intake Type
  • 6.2.3 Selection of Open Intake Location
  • 6.2.4 Minimization of Impingement and Entrainment Impacts
  • 6.2.5 Design Considerations
  • 6.2.6 Costs of Open Intakes
  • 6.3 Subsurface Intakes
  • 6.3.1 Types and Configurations
  • 6.3.2 Design Considerations
  • 6.3.3 Costs of Subsurface Intakes
  • 6.4 References
  • Chapter 7: Intake Pump Stations
  • 7.1 Introduction
  • 7.2 Types and Configurations
  • 7.2.1 Wet-Well Pump Stations
  • 7.2.2 Dry-Well Pump Stations
  • 7.2.3 Canned Pump Stations
  • 7.3 Planning and Design Considerations
  • 7.3.1 Pump Station Location
  • 7.3.2 Pump Room Configuration
  • 7.3.3 Inlet and Suction Well Configuration
  • 7.3.4 Surge Analysis and Protection
  • 7.3.5 Corrosion Protection
  • 7.3.6 Water Quality Monitoring and Controls
  • 7.4 Chemical Feed Systems
  • 7.4.1 Sodium Hypochlorite Feed System
  • 7.4.2 Sulfuric Acid Feed System
  • 7.5 Intake Pump Station Construction Costs
  • 7.6 References
  • Chapter 8: Source Water Screening
  • 8.1 Introduction
  • 8.2 Bar, Band, and Drum Screens
  • 8.2.1 Coarse Bar Screens (Bar Racks)
  • 8.2.2 Fine Screens
  • 8.3 Microscreens
  • 8.3.1 Types and Configurations
  • 8.3.2 Design Example
  • 8.3.3 Microscreen Costs
  • 8.4 Cartridge Filters
  • 8.4.1 Types and Configurations
  • 8.4.2 Planning and Design Considerations
  • 8.4.3 Design Example
  • 8.4.4 Cartridge Filter System Costs
  • 8.5 References
  • Chapter 9: Source Water Conditioning
  • 9.1 Introduction
  • 9.2 Coagulation
  • 9.2.1 Types of Coagulation Chemicals and Feed Systems
  • 9.2.2 Planning Considerations
  • 9.2.3 Design Example
  • 9.3 Flocculation
  • 9.3.1 Types of Flocculation Chemicals and Feed Systems
  • 9.3.2 Planning and Design Considerations
  • 9.3.3 Design Example
  • 9.4 Scale Inhibitors
  • 9.4.1 Acids
  • 9.4.2 Other Scale Inhibitors
  • 9.5 Biocides
  • 9.5.1 Sodium Hypochlorite
  • 9.5.2 Chlorine Dioxide
  • 9.5.3 Chloramines
  • 9.5.4 Nonoxidizing Biocides
  • 9.6 Dechlorination
  • 9.7 Planning and Design Considerations for Source Water Conditioning
  • 9.7.1 Properties of Commonly Used Source Water Conditioning Chemicals
  • 9.7.2 Example Calculations
  • 9.8 References
  • Chapter 10: Sand Removal, Sedimentation, and Dissolved Air Flotation
  • 10.1 Introduction
  • 10.2 Sand Removal Systems
  • 10.2.1 Settling Canals and Retention Basins
  • 10.2.2 Strainers
  • 10.2.3 Cyclone Separators
  • 10.3 Sedimentation Tanks
  • 10.3.1 Introduction
  • 10.3.2 Planning and Design Considerations
  • 10.3.3 Design Example
  • 10.4 Dissolved Air Flotation Clarifiers
  • 10.4.1 Types and Configurations
  • 10.4.2 Planning and Design Considerations
  • 10.4.3 Design Example
  • 10.5 Lamella Settler and DAF Clarifier Costs
  • 10.6 References
  • Chapter 11: Pretreatment by Granular Media Filtration
  • 11.1 Introduction
  • 11.2 The Filter Operation Cycle
  • 11.2.1 Source Water Processing (Filtration)
  • 11.2.2 Filter Media Backwash
  • 11.3 Key Filtration System Components
  • 11.3.1 Filter Cells
  • 11.3.2 Filter Media
  • 11.3.3 Media Support Layer and Filter Underdrain System
  • 11.3.4 Service Facilities and Equipment
  • 11.4 Filter Types and Configurations
  • 11.4.1 Single-Medium and Dual- and Tri-Media Filters
  • 11.4.2 Single- and Two-Stage Filters
  • 11.4.3 Downflow and Upflow Filters
  • 11.4.4 Filters Combined with Dissolved Air Flotation Clarifiers
  • 11.4.5 Gravity and Pressure Filters
  • 11.5 Filter Performance
  • 11.5.1 Removal of Solids
  • 11.5.2 Removal of Organics
  • 11.5.3 Removal of Microorganisms
  • 11.6 Source Water Pretreatment Prior to Granular Media Filtration
  • 11.7 Planning and Design Considerations
  • 11.7.1 Single-Stage Dual-Media Filters
  • 11.7.2 Two-Stage Filters
  • 11.7.3 Design Examples
  • 11.8 Pretreatment System Costs
  • 11.9 References
  • Chapter 12: Pretreatment by Membrane Filtration
  • 12.1 Introduction
  • 12.2 The Filtration Process
  • 12.2.1 Processing (Filtration)
  • 12.2.2 Backwash
  • 12.2.3 Cleaning
  • 12.2.4 Integrity Testing
  • 12.3 Key Filtration System Components
  • 12.3.1 Filter Vessels and Modules
  • 12.3.2 Membrane Filtration Media
  • 12.3.3 Service Facilities and Equipment
  • 12.4 Filter Types and Configurations
  • 12.4.1 Pressurized Membrane Systems
  • 12.4.2 Submerged Membrane Systems
  • 12.4.3 Comparison of Pressurized and Submerged Systems
  • 12.5 Filter Performance
  • 12.5.1 Removal of Solids
  • 12.5.2 Removal of Organics
  • 12.5.3 Removal of Microorganisms
  • 12.6 Planning and Design Considerations
  • 12.6.1 Source Water Turbidity
  • 12.6.2 Source Water Organic Content
  • 12.6.3 Source Water Temperature
  • 12.7 Overview of Membrane Products Used for Saline Water Pretreatment
  • 12.7.1 Norit (Pentair X-Flow)
  • 12.7.2 Memcor (Siemens)
  • 12.7.3 Hydranautics
  • 12.7.4 GE Zenon
  • 12.7.5 Other UF and MF Membrane Products
  • 12.8 Design Examples
  • 12.8.1 Submerged UF Pretreatment System
  • 12.8.2 Pressure-Driven UF Pretreatment System
  • 12.9 Pretreatment System Costs
  • 12.10 References
  • Chapter 13: Comparison of Granular Media and Membrane Pretreatment
  • 13.1 Introduction
  • 13.2 Effect of Source Water Quality on Performance
  • 13.3 Surface Area Requirements
  • 13.4 Quantity and Quality of Generated Residuals
  • 13.5 Chemical Use
  • 13.6 Power Use
  • 13.7 Economy of Scale
  • 13.8 Filtration Media Replacement Costs
  • 13.9 Commoditization
  • 13.10 Water Production Costs
  • 13.11 Guidelines for Selecting a Pretreatment System
  • 13.12 References
  • Chapter 14: Reverse Osmosis Separation
  • 14.1 Introduction
  • 14.2 Filtered Water Transfer Pumps
  • 14.3 High-Pressure Feed Pumps
  • 14.3.1 Overview
  • 14.3.2 Types of High-Pressure Pumps
  • 14.4 Spiral-Wound Polyamide Membrane Elements
  • 14.4.1 Overview
  • 14.4.2 Nanofiltration (Water Softening) Elements
  • 14.4.3 Brackish Water Desalination Elements
  • 14.4.4 Seawater Desalination Elements
  • 14.5 Pressure Vessels
  • 14.5.1 Description
  • 14.5.2 Membrane Vessel Classification
  • 14.5.3 Alternative Membrane Configurations within the Vessels
  • 14.6 RO System Piping
  • 14.7 RO Skids and Trains
  • 14.8 Energy Recovery Systems
  • 14.8.1 Overview
  • 14.8.2 Centrifugal Energy-Recovery Systems
  • 14.8.3 Isobaric Energy Recovery Systems
  • 14.9 Membrane Flushing and Cleaning Systems
  • 14.9.1 Membrane Flushing System
  • 14.9.2 Membrane Cleaning System
  • 14.10 Instrumentation and Controls
  • 14.10.1 Overview
  • 14.10.2 SCADA System
  • 14.10.3 Plant Monitoring and Control
  • 14.10.4 Instrumentation
  • 14.11 RO System Types and Configurations
  • 14.11.1 Overview
  • 14.11.2 NF System Configurations
  • 14.11.3 BWRO System Configurations
  • 14.11.4 Seawater System Configurations
  • 14.12 Planning and Design Considerations
  • 14.12.1 General Design Methodology
  • 14.12.2 Design Example: BWRO System
  • 14.12.3 Design Example: SWRO System
  • 14.13 RO System Desalination Costs
  • 14.14 Desalination Systems with Large-Diameter RO Membranes
  • 14.14.1 Large RO Membranes: Commercial Products
  • 14.14.2 Key Features of Large RO Elements and Systems
  • 14.15 References
  • Chapter 15: Post-Treatment of Desalinated Water
  • 15.1 Introduction
  • 15.1.1 Remineralization for Corrosion Protection
  • 15.1.2 Mineral Supplementation
  • 15.1.3 Disinfection
  • 15.1.4 Water Quality Polishing
  • 15.1.5 General Product Water Quality Guidelines
  • 15.1.6 Overview of Typical Post-Treatment System
  • 15.2 Remineralization Systems
  • 15.2.1 Remineralization by Chemical Addition
  • 15.2.2 Remineralization by Mixing of Desalinated and Source Waters
  • 15.2.3 Remineralization by Dissolving Minerals in Desalinated Water
  • 15.3 Design Considerations for Lime Feed Systems
  • 15.3.1 Key Design Criteria
  • 15.3.2 Design and Operational Issues
  • 15.4 Design Considerations for Carbon Dioxide Feed Systems
  • 15.4.1 Key Design Criteria
  • 15.4.2 Design and Operational Issues
  • 15.5 Design Considerations for Limestone (Calcite) Contactors
  • 15.5.1 Calcite Contactor Configuration
  • 15.5.2 Design and Operational Issues
  • 15.5.3 Calcite Beds with Continuous Feed
  • 15.6 Impact of Remineralization on Product Water Quality
  • 15.7 Design Examples
  • 15.7.1 Example of Lime–Carbon Dioxide Conditioning System
  • 15.7.2 Example of Calcite–Carbon Dioxide Conditioning System
  • 15.8 Remineralization Costs
  • 15.8.1 Overview of Construction Costs
  • 15.8.2 Example Cost Estimate of Lime–Carbon Dioxide Conditioning System
  • 15.8.3 Example Cost Estimate of Calcite–Carbon Dioxide Conditioning System
  • 15.8.4 Costs of Remineralization Chemicals
  • 15.9 Disinfection Systems
  • 15.9.1 Chlorination
  • 15.9.2 Chloramination
  • 15.9.3 Chlorine Dioxide Disinfection
  • 15.9.4 Ozonation
  • 15.9.5 Ultraviolet Light Disinfection
  • 15.9.6 Disinfection Byproducts Formation and Control
  • 15.9.7 Chlorine Residual Stability and Product Water Quality
  • 15.9.8 Design of Disinfection Systems
  • 15.9.9 Disinfection System Costs
  • 15.10 References
  • Chapter 16: Desalination Plant Discharge Management
  • 16.1 Introduction
  • 16.2 Desalination Plant Discharge Characterization
  • 16.2.1 Desalination Process Side Streams
  • 16.2.2 Concentrate
  • 16.2.3 Backwash Water
  • 16.2.4 Membrane Flush Water
  • 16.3 Surface Water Discharge of Concentrate
  • 16.3.1 New Surface Water Discharge
  • 16.3.2 Potential Environmental Impacts
  • 16.3.3 Concentrate Treatment Prior to Surface Water Discharge
  • 16.3.4 Design Guidelines for Surface Water Discharges
  • 16.3.5 Costs for New Surface Water Discharge
  • 16.3.6 Case Studies of New Surface Water Discharges
  • 16.3.7 Co-Disposal with Wastewater Effluent
  • 16.3.8 Co-disposal with Power Plant Cooling Water
  • 16.4 Discharge to Sanitary Sewer
  • 16.4.1 Description
  • 16.4.2 Potential Environmental Impacts
  • 16.4.3 Effect on Sanitary Sewer Operations
  • 16.4.4 Impact on Wastewater Treatment Plant Operations
  • 16.4.5 Effect on Water Reuse
  • 16.4.6 Design and Configuration Guidelines
  • 16.4.7 Costs for Sanitary Sewer Discharge
  • 16.5 Deep Well Injection
  • 16.5.1 Description
  • 16.5.2 Potential Environmental Impacts
  • 16.5.3 Criteria and Methods for Feasibility Assessment
  • 16.5.4 Design and Configuration Guidelines
  • 16.5.5 Injection Well Costs
  • 16.6 Land Application
  • 16.6.1 Description
  • 16.6.2 Potential Environmental Impacts
  • 16.6.3 Criteria and Methods for Feasibility Assessment
  • 16.6.4 Design and Configuration Guidelines
  • 16.6.5 Land Application Costs
  • 16.7 Evaporation Ponds
  • 16.7.1 Description
  • 16.7.2 Potential Environmental Impacts
  • 16.7.3 Criteria and Methods for Feasibility Assessment
  • 16.7.4 Design and Configuration Guidelines
  • 16.7.5 Evaporation Pond Costs
  • 16.8 Zero Liquid Discharge Concentrate Disposal Systems
  • 16.8.1 Description
  • 16.8.2 Potential Environmental Impacts
  • 16.8.3 Criteria and Methods for Feasibility Assessment
  • 16.8.4 Design and Configuration Guidelines
  • 16.8.5 Zero Liquid Discharge Costs
  • 16.9 Beneficial Use of Concentrate
  • 16.9.1 Technology Overview
  • 16.9.2 Feasibility of Beneficial Reuse
  • 16.10 Regional Concentrate Management
  • 16.10.1 Types of Regional Concentrate Management Systems
  • 16.10.2 Use of Brackish Water Concentrate in SWRO Plants
  • 16.11 Nonconcentrate Side Stream Management
  • 16.11.1 Backwash Water
  • 16.11.2 Membrane Flush Water
  • 16.12 Comparison of Concentrate Management Alternatives
  • 16.12.1 Selection of Concentrate Management Approach
  • 16.12.2 Costs
  • 16.12.3 Environmental Impacts
  • 16.12.4 Regulatory Acceptance
  • 16.12.5 Ease of Implementation
  • 16.12.6 Site Footprint
  • 16.12.7 Reliability and Operational Constraints
  • 16.12.8 Energy Use
  • 16.13 References
  • Chapter 17: Desalination Project Cost Estimates
  • 17.1 Introduction
  • 17.2 Overview of Water Production Costs
  • 17.2.1 Cost of Water Produced by BWRO Desalination Plants
  • 17.2.2 Cost of Water Produced by SWRO Desalination Plants
  • 17.3 Capital Cost Estimates
  • 17.3.1 Capital Cost Breakdown for BWRO Desalination Projects
  • 17.3.2 Capital Costs Breakdown for SWRO Desalination Projects
  • 17.3.3 Direct Capital (Construction) Costs
  • 17.3.4 Indirect Capital Costs
  • 17.4 Operation and Maintenance (O&M) Cost Estimates
  • 17.4.1 O&M Cost Breakdown for BWRO Desalination Plants
  • 17.4.2 O&M Cost Breakdown for SWRO Desalination Plants
  • 17.4.3 Power Costs
  • 17.4.4 Chemical Costs
  • 17.4.5 Labor Costs
  • 17.4.6 Maintenance Costs
  • 17.4.7 Membrane and Cartridge Filter Replacement Costs
  • 17.4.8 Plant Waste Stream Disposal Costs
  • 17.4.9 Environmental and Performance Monitoring Costs
  • 17.4.10 Indirect O&M Costs
  • 17.5 Water Production Cost Estimate
  • 17.5.1 Fixed Cost Components
  • 17.5.2 Variable Cost Components
  • 17.6 Example Cost Estimate
  • 17.6.1 Project Description
  • 17.6.2 Capital Costs
  • 17.6.3 Operation and Maintenance Costs
  • 17.6.4 Water Production Cost
  • 17.7 References
  • Glossary
  • Index