CITATION

Richards, Mark A.. Fundamentals of Radar Signal Processing. US: McGraw-Hill Professional, 2005.

Fundamentals of Radar Signal Processing

Published:  June 2005

eISBN: 9780071776486 0071776486 | ISBN: 9780071444743
  • Contents
  • Preface
  • Acknowledgments
  • List of Symbols
  • List of Acronyms
  • Chapter 1. Introduction to Radar Systems
  • 1.1 History and Applications of Radar
  • 1.2 Basic Radar Functions
  • 1.3 Elements of a Pulsed Radar
  • 1.3.1 Transmitter and waveform generator
  • 1.3.2 Antennas
  • 1.3.3 Receivers
  • 1.4 Review of Selected Signal Processing Concepts and Operations
  • 1.4.1 Resolution
  • 1.4.2 Spatial frequency
  • 1.4.3 Fourier transforms
  • 1.4.4 The sampling theorem and spectrum replication
  • 1.4.5 Vector representation of signals
  • 1.4.6 Data integration
  • 1.4.7 Correlation
  • 1.5 A Preview of Basic Radar Signal Processing
  • 1.5.1 Radar time scales
  • 1.5.2 Phenomenology
  • 1.5.3 Signal conditioning and interference suppression
  • 1.5.4 Imaging
  • 1.5.5 Detection
  • 1.5.6 Postprocessing
  • 1.6 Radar Literature
  • 1.6.1 Radar systems and components
  • 1.6.2 Radar signal processing
  • 1.6.3 Advanced radar signal processing
  • 1.6.4 Current radar research
  • References
  • Chapter 2. Signal Models
  • 2.1 Components of a Radar Signal
  • 2.2 Amplitude Models
  • 2.2.1 Simple point target radar range equation
  • 2.2.2 Distributed target forms of the range equation
  • 2.2.3 Radar cross section
  • 2.2.4 Radar cross section for meteorological targets
  • 2.2.5 Statistical description of radar cross section
  • 2.2.6 Swerling models
  • 2.3 Clutter
  • 2.3.1 Behavior of σ[sup(0)]
  • 2.3.2 Signal-to-clutter ratio
  • 2.3.3 Temporal and spatial correlation of clutter
  • 2.3.4 Compound models of radar cross section
  • 2.4 Noise Model and Signal-to-Noise Ratio
  • 2.5 Jamming
  • 2.6 Frequency Models: The Doppler Shift
  • 2.6.1 Doppler shift
  • 2.6.2 Simplified approach to Doppler shift
  • 2.6.3 The “stop-and-hop” assumption and spatial Doppler
  • 2.7 Spatial Models
  • 2.7.1 Variation with angle or cross-range
  • 2.7.2 Variation with range
  • 2.7.3 Projections
  • 2.7.4 Multipath
  • 2.8 Spectral Model
  • 2.9 Summary
  • References
  • Chapter 3. Sampling and Quantization of Pulsed Radar Signals
  • 3.1 Domains and Criteria for Sampling Radar Signals
  • 3.1.1 Time and frequency samples
  • 3.1.2 Spatial samples
  • 3.1.3 Sampling criteria
  • 3.2 Sampling in the Fast Time Dimension
  • 3.3 Sampling in Slow Time: Selecting the Pulse Repetition Interval
  • 3.4 Sampling the Doppler Spectrum
  • 3.4.1 The Nyquist rate in Doppler
  • 3.4.2 Straddle loss
  • 3.5 Sampling in the Spatial and Angle Dimensions
  • 3.5.1 Phased array element spacing
  • 3.5.2 Antenna beam spacing
  • 3.6 Quantization
  • 3.7 I/Q Imbalance and Digital I/Q
  • 3.7.1 I/Q imbalance and offset
  • 3.7.2 Correcting I/Q errors
  • 3.7.3 Digital I/Q
  • References
  • Chapter 4. Radar Waveforms
  • 4.1 Introduction
  • 4.2 The Waveform Matched Filter
  • 4.2.1 The matched filter
  • 4.2.2 Matched filter for the simple pulse
  • 4.2.3 All-range matched filtering
  • 4.2.4 Range resolution of the matched filter
  • 4.3 Matched Filtering of Moving Targets
  • 4.4 The Ambiguity Function
  • 4.4.1 Definition and properties of the ambiguity function
  • 4.4.2 Ambiguity function of the simple pulse
  • 4.5 The Pulse Burst Waveform
  • 4.5.1 Matched filter for the pulse burst waveform
  • 4.5.2 Pulse-by-pulse processing
  • 4.5.3 Range ambiguity
  • 4.5.4 Doppler response of the pulse burst waveform
  • 4.5.5 Ambiguity function for the pulse burst waveform
  • 4.5.6 Relation of slow-time spectrum to ambiguity function
  • 4.6 Frequency-Modulated Pulse Compression Waveforms
  • 4.6.1 Linear frequency modulation
  • 4.6.2 The principle of stationary phase
  • 4.6.3 Ambiguity function of the LFM waveform
  • 4.6.4 Range-Doppler coupling
  • 4.6.5 Stretch processing
  • 4.7 Range Side Lobe Control for FM Waveforms
  • 4.7.1 Matched filter frequency response shaping
  • 4.7.2 Waveform spectrum shaping
  • 4.8 The Stepped Frequency Waveform
  • 4.9 Phase-Modulated Pulse Compression Waveforms
  • 4.9.1 Biphase codes
  • 4.9.2 Polyphase codes
  • 4.10 Costas Frequency Codes
  • References
  • Chapter 5. Doppler Processing
  • 5.1 Alternate Forms of the Doppler Spectrum
  • 5.2 Moving Target Indication (MTI)
  • 5.2.1 Pulse cancellers
  • 5.2.2 Vector formulation of the matched filter
  • 5.2.3 Matched filters for clutter suppression
  • 5.2.4 Blind speeds and staggered PRFs
  • 5.2.5 MTI figures of merit
  • 5.2.6 Limitations to MTI performance
  • 5.3 Pulse Doppler Processing
  • 5.3.1 The discrete time Fourier transform of a moving target
  • 5.3.2 Sampling the DTFT: the discrete Fourier transform
  • 5.3.3 Matched filter and filterbank interpretations of pulse Doppler processing with the DFT
  • 5.3.4 Fine Doppler estimation
  • 5.3.5 Modern spectral estimation in pulse Doppler processing
  • 5.3.6 Dwell-to-dwell stagger
  • 5.4 Pulse Pair Processing
  • 5.5 Additional Doppler Processing Issues
  • 5.5.1 Combined MTI and pulse Doppler processing
  • 5.5.2 Transient effects
  • 5.5.3 PRF Regimes and Ambiguity Resolution
  • 5.6 Clutter Mapping and the Moving Target Detector
  • 5.6.1 Clutter mapping
  • 5.6.2 The moving target detector
  • 5.7 MTI for Moving Plateforms: Adaptive Displaced Phase Center Antenna Processing
  • 5.7.1 The DPCA concept
  • 5.7.2 Adaptive DPCA
  • References
  • Chapter 6. Detection Fundamentals
  • 6.1 Radar Detection as Hypothesis Testing
  • 6.1.1 The Neyman-Pearson detection rule
  • 6.1.2 The likelihood ratio test
  • 6.2 Threshold Detection in Coherent Systems
  • 6.2.1 The Gaussian case for coherent receivers
  • 6.2.2 Unknown parameters and threshold detection
  • 6.2.3 Linear and square-law detectors
  • 6.2.4 Other unknown parameters
  • 6.3 Threshold Detection of Radar Signals
  • 6.3.1 Coherent, noncoherent, and binary integration
  • 6.3.2 Nonfluctuating targets
  • 6.3.3 Albersheim’s equation
  • 6.3.4 Fluctuating targets
  • 6.3.5 Shnidman’s equation
  • 6.4 Binary integration
  • 6.5 Useful Numerical Approximations
  • 6.5.1 Approximations to the error function
  • 6.5.2 Approximations to the magnitude function
  • References
  • Chapter 7. Constant False Alarm Rate (CFAR) Detection
  • 7.1 The Effect of Unknown Interference Power on False Alarm Probability
  • 7.2 Cell-Averaging CFAR
  • 7.2.1 The effect of varying P[sub(FA)]
  • 7.2.2 The cell-averaging CFAR concept
  • 7.2.3 CFAR reference windows
  • 7.3 Analysis of Cell-Averaging CFAR
  • 7.3.1 Derivation of CA CFAR threshold
  • 7.3.2 Cell-averaging CFAR performance
  • 7.3.3 CFAR loss
  • 7.4 CA CFAR Limitations
  • 7.4.1 Target masking
  • 7.4.2 Clutter edges
  • 7.5 Extensions to Cell-Averaging CFAR
  • 7.6 Order Statistic CFAR
  • 7.7 Additional CFAR Topics
  • 7.7.1 Adaptive CFAR
  • 7.7.2 Two-parameter CFAR
  • 7.7.3 Clutter map CFAR
  • 7.7.4 Distribution-free CFAR
  • 7.7.5 System-level control of false alarms
  • References
  • Chapter 8. Introduction to Synthetic Aperture Imaging
  • 8.1 Introduction to SAR Fundamentals
  • 8.1.1 Cross-range resolution in radar
  • 8.1.2 The synthetic aperture viewpoint
  • 8.1.3 Doppler viewpoint
  • 8.1.4 SAR coverage and sampling
  • 8.2 Stripmap SAR Data Characteristics
  • 8.2.1 Stripmap SAR Geometry
  • 8.2.2 Stripmap SAR data set
  • 8.3 Stripmap SAR Image Formation Algorithms
  • 8.3.1 Doppler beam sharpening
  • 8.3.2 Quadratic phase error effects
  • 8.3.3 Range-Doppler algorithms
  • 8.3.4 Depth of focus
  • 8.4 Spotlight SAR Data Characteristics
  • 8.5 The Polar Format Image Formation Algorithm for Spotlight SAR
  • 8.6 Interferometric SAR
  • 8.6.1 The effect of height on a SAR image
  • 8.6.2 IFSAR processing steps
  • 8.7 Other Considerations
  • 8.7.1 Motion compensation and autofocus
  • 8.7.2 Autofocus
  • 8.7.3 Speckle reduction
  • References
  • Chapter 9. Introduction to Beamforming and Space-Time Adaptive Processing
  • 9.1 Spatial Filtering
  • 9.1.1 Conventional beamforming
  • 9.1.2 Adaptive beamforming
  • 9.1.3 Adaptive beamforming with preprocessing
  • 9.2 Space-Time Signal Environment
  • 9.3 Space-Time Signal Modeling
  • 9.4 Processing the Space-Time Signal
  • 9.4.1 Optimum matched filtering
  • 9.4.2 STAP metrics
  • 9.4.3 Relation to displaced phase center antenna processing
  • 9.4.4 Adaptive matched filtering
  • 9.5 Computational Issues in STAP
  • 9.5.1 Power domain solution
  • 9.5.2 Computational load of the power domain solution
  • 9.5.3 Voltage domain solution and computational load
  • 9.5.4 Conversion to computational rates
  • 9.6 Reduced-Dimension STAP
  • 9.7 Advanced STAP Algorithms and Analysis
  • 9.8 Limitations to STAP
  • References
  • Index