Sign in
|
Register
|
Mobile
Home
Browse
About us
Help/FAQ
Advanced search
Home
>
Browse
>
Small Antennas:Miniaturization Techniques & Applications
CITATION
Volakis, John;
Chen, Chi-Chih; and
Fujimoto, Kyohei
.
Small Antennas:Miniaturization Techniques & Applications
.
US
: McGraw-Hill Professional, 2010.
Add to Favorites
Email to a Friend
Download Citation
Small Antennas:Miniaturization Techniques & Applications
Authors:
John Volakis
,
Chi-Chih Chen
and
Kyohei Fujimoto
Published:
June 2010
eISBN:
9780071625548 0071625542
|
ISBN:
9780071625531
Open eBook
Book Description
Table of Contents
Contents
Acknowledgments
Introduction
1 Survey of Small Antenna Theory
1.1 Introduction
1.2 Small Antenna Parameters
1.2.1 Directivity
1.2.2 Radiation Efficiency
1.2.3 Quality Factor
1.2.4 Input Impedance and Matching
1.3 Small Antenna Theory
1.3.1 Work of Wheeler (1947–1975)
1.3.2 Work of Chu (1948)
1.3.3 Work of Harrington (1960)
1.3.4 Work of Collin, Rothschild, and Fante (1964–1969)
1.3.5 Work of Hansen (1981–2006)
1.3.6 Work of McLean (1996)
1.3.7 Work of Foltz and McLean (1999)
1.3.8 Work of Thiele (2003)
1.3.9 Work of Geyi (2003)
1.3.10 Work of Best (2003–2008)
1.3.11 Work of Kwon and Pozar (2005–2009)
1.3.12 Work of Thal (2006–2009)
1.3.13 Work of Gustafsson (2007)
References
2 Fundamental Limits and Design Guidelines for Miniaturizing Ultra-Wideband Antennas
2.1 Introduction
2.2 Overview of Fano-Bode Theory
2.3 Fano-Bode Limit for the Band-Pass Response
2.4 Fano-Bode Limit for the High-Pass Response
2.5 Antenna Miniaturization
2.5.1 Concept
2.5.2 Dipole Antenna Example
2.6 Broadband Antenna Miniaturization
2.6.1 Optimal Miniaturization Factor
2.6.2 Loading Profile
2.6.3 Equal LC Loading
2.7 Conclusion
References
3 Overview of Small Antenna Designs
3.1 Introduction
3.2 Miniaturization via Shaping
3.2.1 Slot Loading
3.2.2 Bending and Folding
3.2.3 Space-Filling Curves
3.2.4 Meander Line Antennas
3.2.5 Fractal Antennas
3.2.6 Volumetric Antennas
3.2.7 Radio Frequency Identification Device Antennas
3.2.8 Small Ultra-Wideband Antennas
3.2.9 Lumped Loading
3.3 Miniaturization via Material Loading
3.3.1 Dielectric Materials
3.3.2 Magnetic Materials
3.3.3 Polymer Ceramic Material
3.4 Optimization Methods
3.4.1 Introduction
3.4.2 Genetic Algorithm
3.4.3 Particle Swarm Optimization
3.5 Antennas on Electromagnetic Bandgap Ground Planes
3.5.1 Performances Enhancement via Surface-Wave Suppression
3.5.2 Low-Profile Antennas on EBG Ground Plane
3.5.3 Wideband EBG Design
References
4 Antenna Miniaturization via Slow Waves
4.1 Introduction
4.2 Miniaturization Factor
4.3 Basic Antenna Miniaturization Concept
4.3.1 Phase Coherent Radiation Conditions
4.3.2 Equivalent Transmission Line (TL) Model of an Antenna
4.3.3 Artificial Transmission Line (ATL) of Antennas
4.4 Antenna Miniaturization Examples
4.4.1 Two-Wire Loop Antenna
4.4.2 Antenna Miniaturization by Increasing Shunt Capacitance
4.4.3 Antenna Miniaturization by Increasing ATL Series Inductance
4.4.4 Antenna Miniaturization by Increasing both ATL Series Inductance and Shunt Capacitance
References
5 Spiral Antenna Miniaturization
5.1 Spiral Antenna Fundamentals
5.1.1 Basic Planar Spiral Antenna Geometry
5.1.2 Spiral Radiation
5.1.3 Input Impedance
5.1.4 Radiation Patterns
5.1.5 Radiation Phase Center
5.2 Truncation Effect in Finite Spiral Antennas
5.3 Spiral Antenna Backed with a PEC Ground Plane
5.4 Spiral Antenna Miniaturization Using Slow Wave Treatments
5.5 Spiral Miniaturization Using Dielectric Material Loading (Shunt Capacitance)
5.6 Spiral Antenna Miniaturization Using Inductive Loading (Series Inductance)
5.6.1 Planar Inductive Loading
5.6.2 Volumetric Inductive Loading
5.7 Fabricated Miniature Spiral Antennas
References
6 Negative Refractive Index Metamaterial and Electromagnetic Band Gap Based Antennas
6.1 Introduction
6.2 Negative Refractive Index Metamaterials
6.2.1 Propagation in (ε < 0, μ < 0) Media
6.2.2 Circuit Model of (ε < 0, μ < 0) Media
6.2.3 Composite Circuit Model for the NRI-TL Medium
6.3 Metamaterial Antennas Based on NRI Concepts
6.3.1 Leaky Wave Antennas
6.3.2 Miniature and Multi-band Patch Antennas
6.3.3 Compact and Low-Profile Monopole Antennas
6.3.4 Metamaterial-Inspired Antennas
6.4 High-Gain Antennas Utilizing EBG Defect Modes
References
7 Antenna Miniaturization Using Magnetic Photonic and Degenerate Band Edge Crystals
7.1 Introduction
7.2 Slow Wave Resonances of MPC and DBE Crystals
7.3 High Gain Antennas Embedded Within Finite Thickness MPC and DBE Crystals
7.3.1 Transmission Characteristics of Finite Thickness MPCs
7.3.2 Dipole Performance Within Magnetic Photonic Crystal
7.3.3 Resonance and Amplitude Increase Within DBE Crystals
7.3.4 Dipole Performance Within Degenerate Band Edge Crystal
7.3.5 Practical Degenerate Band Edge Antenna Realizations
7.4 Printed Antenna Miniaturization via Coupled Lines Emulating Anisotropy
7.4.1 Antenna Miniaturization Using Degenerate Band Edge Dispersion
7.4.2 Realizing DBE Dispersion via Printed Circuit Emulation of Anisotropy
7.4.3 DBE Antenna Design Using Dual Microstrip Lines
7.4.4 Coupled Double Loop Antennas
7.4.5 Printed MPC Antennas on Biased Ferrite Substrates
7.5 Platform/Vehicle Integration of Metamaterial Antennas
References
8 Impedance Matching for Small Antennas Including Passive and Active Circuits
8.1 Introduction
8.2 Passive Narrowband Matching
8.2.1 Dipole
8.3 Passive Broadband Matching
8.3.1 Broadband Planar Dipole
8.3.2 Inverted Hat Antenna
8.4 Negative Matching
8.4.1 Loop Antenna
8.4.2 Flare Dipole
8.5 Concluding Comments
References
9 Antennas for RFID Systems
9.1 Historical Background
9.2 Basic Operation of RFID Systems
9.2.1 Tag Categories
9.2.2 Passive Radio Frequency Identifications
9.3 Radio Frequency Identification Antennas
9.3.1 Meander-Line Dipoles
9.3.2 Patch Antennas
9.3.3 Fractal Antennas
9.3.4 Planar Antennas
9.3.5 Slot Antennas
9.4 RFID Power Harvesting—Rectennas
References
Index