CITATION

Salman, Emre and Friedman, Eby. High Performance Integrated Circuit Design. US: McGraw-Hill Professional, 2012.

High Performance Integrated Circuit Design

Published:  August 2012

eISBN: 9780071635752 0071635750 | ISBN: 9780071635769
  • Cover
  • About the Authors
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • Part I: Background
  • Chapter 1: Introduction
  • 1.1 Brief History
  • 1.1.1 The Transistor
  • 1.1.2 Integrated Circuit
  • 1.2 More Moore and More Than Moore
  • 1.3 Review of IC Design Objectives
  • 1.4 Book Organization
  • Chapter 2: Technology Scaling
  • 2.1 Device Scaling
  • 2.1.1 MOS Device Operation
  • 2.1.2 Constant Electric Field Scaling
  • 2.1.3 Constant Voltage Scaling
  • 2.1.4 Comparison between Device Scaling Scenarios
  • 2.2 Small Geometry Effects
  • 2.2.1 Threshold Voltage Roll-Off
  • 2.2.2 Drain-Induced Barrier Lowering
  • 2.2.3 Velocity Saturation
  • 2.2.4 Mobility Degradation
  • 2.3 Device Enhancements
  • 2.3.1 Nonuniform Channel Doping
  • 2.3.2 Strain Engineering
  • 2.3.3 Combining High-K and Metal Gate Structures
  • 2.3.4 Multiple Gate Devices
  • 2.4 Interconnect Scaling
  • 2.4.1 Global versus Local Interconnects
  • 2.4.2 Ideal Scaling
  • 2.4.3 More Realistic Scaling Scenarios
  • 2.4.4 Comparison between Interconnect Scaling Scenarios
  • 2.5 Interconnect Enhancements
  • 2.5.1 Ultra-Low-K Dielectric Material
  • 2.5.2 Three-Dimensional Integration
  • 2.5.3 On-Chip Optical Interconnect
  • 2.5.4 Carbon Based On-Chip Interconnect
  • 2.6 Chapter Summary
  • Part II: Interconnect Networks
  • Chapter 3: Interconnect Modeling and Extraction
  • 3.1 Interconnect Design Criteria
  • 3.1.1 Latency
  • 3.1.2 Bandwidth
  • 3.1.3 Noise
  • 3.1.4 Power Dissipation
  • 3.1.5 Physical Area
  • 3.2 Interconnect Capacitance
  • 3.2.1 Components of Interconnect Capacitance
  • 3.2.2 Interconnect Capacitance Extraction
  • 3.3 Interconnect Resistance
  • 3.3.1 Copper Resistivity
  • 3.3.2 Interconnect Resistance Extraction
  • 3.4 Interconnect Inductance
  • 3.4.1 Definitions of Inductance
  • 3.4.2 Frequency Dependence of Inductance
  • 3.4.3 When is On-Chip Inductance Important?
  • 3.4.4 Interconnect Inductance Extraction Process
  • 3.5 Chapter Summary
  • Chapter 4: Signal Propagation Analysis
  • 4.1 Lumped versus Distributed Models
  • 4.1.1 Lumped Model
  • 4.1.2 Distributed Transmission Line Model
  • 4.1.3 Lumped Representation of Distributed Interconnects
  • 4.1.4 Determining the Highest Frequency of Interest
  • 4.1.5 Closed-Form Solutions
  • 4.2 Model Order Reduction
  • 4.2.1 Elmore Delay for RC Lines
  • 4.2.2 Wyatt Approximation
  • 4.2.3 Bounds on Delay: Penfield-Rubinstein Algorithm
  • 4.2.4 Moment Matching
  • 4.2.5 Asymptotic Waveform Evaluation
  • 4.2.6 Calculating the Moments of an RLC Tree
  • 4.2.7 Advantages and Limitations of AWE
  • 4.2.8 Direct Truncation of the Transfer Function (DTT)
  • 4.2.9 Elmore Delay for RLC Lines
  • 4.2.10 Krylov-Subspace Techniques
  • 4.3 Chapter Summary
  • Chapter 5: Interconnect Coupling Noise
  • 5.1 Active and Passive Device Noise
  • 5.1.1 Thermal Noise
  • 5.1.2 Shot Noise
  • 5.1.3 Flicker Noise
  • 5.2 Capacitive Coupling Noise
  • 5.2.1 Scaling Characteristics of Coupling Capacitance
  • 5.2.2 Dependence of Coupling Capacitance on Switching Activity
  • 5.2.3 Models of Capacitively Coupled Noise
  • 5.3 Inductive Coupling Noise
  • 5.4 Bus Structured Interconnects
  • 5.5 Effects of Coupling Noise
  • 5.5.1 Functional Failure
  • 5.5.2 Glitch Power Consumption
  • 5.5.3 Increased Delay Uncertainty
  • 5.6 Chapter Summary
  • Chapter 6: Global Signaling
  • 6.1 Interconnect Topology Optimization
  • 6.1.1 Constructing an Interconnect Tree
  • 6.1.2 Wire Sizing, Spacing, and Shaping
  • 6.2 Circuit Level Signaling
  • 6.2.1 Capacitive Load: Tapered Buffer Design
  • 6.2.2 Exponential Tapering Factor
  • 6.2.3 Improvements over Exponential Tapering Factor
  • 6.2.4 Resistive Load: Repeater Insertion in RC Lines
  • 6.2.5 Optimum Number and Size of Repeaters
  • 6.2.6 Inductive Load: Repeater Insertion in RLC Lines
  • 6.2.7 Repeater Insertion in Tree Structured Interconnect
  • 6.2.8 Repeater Insertion to Reduce Coupling Noise
  • 6.2.9 Shield Insertion
  • 6.2.10 Gate Sizing
  • 6.2.11 Signal Rerouting and Wire Reordering
  • 6.3 Tradeoffs in Global Signaling
  • 6.4 Chapter Summary
  • Part III: Power Management
  • Chapter 7: Power Generation
  • 7.1 Characteristics of Voltage Regulators
  • 7.1.1 Regulation Efficiency
  • 7.1.2 Energy Efficiency
  • 7.2 Linear Regulators
  • 7.2.1 General Characteristics
  • 7.2.2 Low-Dropout Voltage Regulator
  • 7.2.3 Tradeoffs in LDO Regulators
  • 7.3 Switched-Capacitor Converters
  • 7.3.1 General Characteristics
  • 7.3.2 Energy Efficiency
  • 7.4 Switching DC-DC Converters
  • 7.4.1 General Characteristics
  • 7.4.2 Switching Buck Converter
  • 7.4.3 Voltage Ripple
  • 7.4.4 Energy Efficiency
  • 7.5 Comparison of Voltage Regulators
  • 7.6 On-Chip Power Conversion
  • 7.6.1 Opportunities
  • 7.6.2 Challenges
  • 7.7 Chapter Summary
  • Chapter 8: Power Distribution Networks
  • 8.1 Power Delivery and Power Supply Noise
  • 8.1.1 Power Supply Noise
  • 8.1.2 Effects of Power Supply Noise
  • 8.1.3 Scaling Trends of Power Supply Noise
  • 8.1.4 Power and Ground Distribution Systems
  • 8.2 On-Chip Power Distribution Architectures
  • 8.2.1 Routed Networks
  • 8.2.2 Irregular Mesh Structured Networks
  • 8.2.3 Regular Grid Structured Networks
  • 8.2.4 Power and Ground Planes
  • 8.2.5 Cascaded Power and Ground Rings
  • 8.2.6 Hybrid Power and Ground Networks
  • 8.3 Output Impedance Characteristics
  • 8.3.1 Target Impedance
  • 8.3.2 Decoupling Capacitance and Resonance
  • 8.3.3 Types of On-Chip Decoupling Capacitors
  • 8.3.4 Dependence of Impedance on Power Grid Type
  • 8.4 Chapter Summary
  • Chapter 9: Computer-Aided Design and Analysis
  • 9.1 Design Flow for On-Chip Power Networks
  • 9.1.1 Pre-Floorplan Stage
  • 9.1.2 Post-Floorplan Stage
  • 9.1.3 Post-Layout Stage
  • 9.2 Modeling RLC Impedance
  • 9.3 Estimating Decoupling Capacitance
  • 9.3.1 Analytic Technique
  • 9.3.2 Simulation Based Technique
  • 9.4 Characterizing the Load Circuit
  • 9.4.1 Utilizing Passive Devices
  • 9.4.2 Utilizing Piecewise Linear Current Sources
  • 9.4.3 Dependence on Input Switching Pattern
  • 9.5 On-Chip Power/Ground Noise Analysis
  • 9.5.1 Static Analysis
  • 9.5.2 Dynamic Analysis
  • 9.5.3 Hierarchical Analysis
  • 9.5.4 Statistical Analysis
  • 9.6 Chapter Summary
  • Chapter 10: Techniques to Reduce Power Supply Noise
  • 10.1 Noise Reduction at the Circuit Level
  • 10.1.1 Topology and Wire Width Optimization
  • 10.1.2 Decoupling Capacitor Placement
  • 10.1.3 Exploiting the Damping Factor
  • 10.1.4 Skew and Slew Rate Control
  • 10.1.5 Opposite Phase Clock Tree
  • 10.1.6 Spread Spectrum Clock Generation
  • 10.2 Noise Reduction at System Level
  • 10.2.1 Power Supply Noise Aware Floorplanning
  • 10.2.2 Package and Board Characteristics
  • 10.2.3 Asynchronous Circuit Design
  • 10.3 Chapter Summary
  • Chapter 11: Power Dissipation
  • 11.1 Transient Power Consumption
  • 11.1.1 Dynamic Power
  • 11.1.2 Short-Circuit Power
  • 11.2 Static Power Consumption
  • 11.2.1 Reverse Biased p-n Junction Leakage Current
  • 11.2.2 Subthreshold Leakage Current
  • 11.2.3 Modeling Subthreshold Current
  • 11.2.4 Subthreshold Slope
  • 11.2.5 Gate Oxide Tunneling Leakage Current
  • 11.2.6 Gate Leakage Current Characteristics
  • 11.2.7 High Permittivity Gate Dielectric Materials
  • 11.2.8 High Permittivity Dielectric and Metal Gate
  • 11.2.9 DC Power
  • 11.3 Chapter Summary
  • Part IV: Synchronization
  • Chapter 12: Synchronization Theory and Tradeoffs
  • 12.1 Classification of Boolean Signals
  • 12.1.1 Isochronous versus Anisochronous Signals
  • 12.1.2 Synchronous versus Asynchronous Signals
  • 12.2 Fully Synchronous Circuit Operation
  • 12.2.1 Timing Relationship
  • 12.2.2 Advantages
  • 12.2.3 Limitations
  • 12.3 Self-Timed Circuit Operation
  • 12.3.1 Timing Relationship
  • 12.3.2 Advantages
  • 12.3.3 Limitations
  • 12.3.4 Fully Synchronous versus Self-Timed Systems
  • 12.4 GALS Circuit Operation
  • 12.4.1 Synchronizers in GALS Systems
  • 12.4.2 Advantages
  • 12.4.3 Limitations
  • 12.5 Chapter Summary
  • Chapter 13: On-Chip Clock Generation
  • 13.1 Ring Oscillators
  • 13.1.1 Frequency Stability in Ring Oscillators
  • 13.1.2 Multiphase Clock Generation
  • 13.2 Crystal Oscillators
  • 13.2.1 Crystal Resonator
  • 13.2.2 Standard Crystal Oscillator
  • 13.2.3 Pierce Oscillator
  • 13.3 Phase-Locked Loops
  • 13.3.1 PLLs in Digital Systems
  • 13.3.2 System Level Characteristics
  • 13.3.3 Phase Detector (PD)
  • 13.3.4 Phase-Frequency Detector
  • 13.3.5 Charge Pump
  • 13.3.6 Loop Filter
  • 13.3.7 Voltage-Controlled Oscillator
  • 13.3.8 Frequency Response and PLL Loop Dynamics
  • 13.4 Delay-Locked Loops
  • 13.4.1 Operating Principle
  • 13.4.2 Advantages
  • 13.4.3 Frequency Response
  • 13.4.4 Limitations
  • 13.5 Chapter Summary
  • Chapter 14: Synchronous System Characteristics
  • 14.1 Delay Components of a Data Path
  • 14.1.1 Minimum Clock Period
  • 14.1.2 Race Condition
  • 14.2 Setup-Hold Times of a Register
  • 14.3 Setup-Hold Time Characterization
  • 14.3.1 Independent Setup-Hold Time Characterization
  • 14.3.2 Interdependent Setup-Hold Time Characterization
  • 14.4 Example of a Local Data Path
  • 14.5 Clock Skew
  • 14.5.1 Definition of Clock Skew
  • 14.6 Timing Constraints
  • 14.6.1 Timing Constraint for Long Data Paths
  • 14.6.2 Timing Constraint for Short Data Paths
  • 14.7 Enhancing Synchronous Performance
  • 14.7.1 Example of Localized Negative Clock Skew
  • 14.8 Chapter Summary
  • Chapter 15: On-Chip Clock Distribution
  • 15.1 Clock Distribution Design
  • 15.1.1 Buffered Clock Distribution Trees
  • 15.1.2 Symmetric H-Tree Clock Distribution Networks
  • 15.1.3 Compensation Techniques for Controlling Clock Skew
  • 15.1.4 Design of Low Power Clock Distribution Networks
  • 15.2 Automated Layout and Synthesis
  • 15.2.1 Automated Clock Distribution Layout
  • 15.2.2 Automated Clock Distribution Synthesis
  • 15.2.3 Retiming
  • 15.3 Analysis and Modeling
  • 15.3.1 Process Insensitive Clock Distribution Networks
  • 15.3.2 Models for Estimating Clock Skew
  • 15.4 Clock Skew Scheduling
  • 15.4.1 Off-Chip Clock Skew
  • 15.4.2 Global and Local Timing Constraints
  • 15.4.3 Example
  • 15.5 Industrial Clock Distribution Networks
  • 15.5.1 The Bell Telephone WE32100 32-Bit Microprocessor
  • 15.5.2 The DEC/Compaq 64-Bit Alpha Microprocessor
  • 15.5.3 8 Bit × 8 Bit Pipelined Multiplier
  • 15.5.4 The Intel IA-64 Microprocessor
  • 15.6 Chapter Summary
  • Part V: Substrate-Aware Design
  • Chapter 16: Substrate Noise in Mixed-Signal Systems
  • 16.1 Switching Noise Coupling Mechanisms
  • 16.1.1 Interconnect Coupling
  • 16.1.2 Substrate Coupling
  • 16.1.3 Substrate Noise Injection Mechanisms
  • 16.2 Computer-Aided Design and Analysis
  • 16.2.1 Substrate Extraction Techniques
  • 16.2.2 Compact Substrate Models
  • 16.2.3 High Level Substrate Noise Analysis
  • 16.3 Effects of Substrate Noise
  • 16.3.1 Low Noise Amplifier
  • 16.3.2 Phase-Locked Loop
  • 16.3.3 Sigma-Delta Data Converter
  • 16.4 Chapter Summary
  • Chapter 17: Techniques to Reduce Substrate Noise
  • 17.1 Noise Reduction at the Circuit Level
  • 17.1.1 Biasing Methodologies
  • 17.1.2 Differential Signaling
  • 17.2 Noise Reduction at the Physical Level
  • 17.2.1 Physical Separation
  • 17.2.2 Guard Rings
  • 17.3 Noise Reduction at the Technology Level
  • 17.3.1 Deep N-Well Isolation
  • 17.3.2 Silicon-on-Insulator Technology
  • 17.4 Chapter Summary
  • Conclusions and Final Remarks
  • Bibliography
  • Index