CITATION

Wang, Linbing. Mechanics of Asphalt: Microstructure and Micromechanics. US: McGraw-Hill Professional, 2010.

Mechanics of Asphalt: Microstructure and Micromechanics

Authors:

Published:  September 2010

eISBN: 9780071640978 0071640975 | ISBN: 9780071498548
  • Contents
  • Acknowledgments
  • Chapter 1 Introduction and Fundamentals for Mathematics and Continuum Mechanics
  • 1.1 General Introduction
  • 1.2 Phenomenological Behavior of Asphalt
  • 1.3 Need for This Book
  • 1.4 Logical Link of Chapters
  • 1.5 Fundamentals of Mathematics
  • 1.6 Fundamentals of Continuum Mechanics
  • Recommended Books for Further Reading
  • Suggested Readings
  • References
  • Chapter 2 Mechanical Properties of Constituents
  • 2.1 Binder Properties
  • 2.2 Aggregates Properties
  • 2.3 Mastics
  • 2.4 Characterization of Mixture Properties
  • 2.5 Nanoscale Characterization
  • References
  • Chapter 3 Microstructure Characterization
  • 3.1 X-ray Tomography Imaging
  • 3.2 Fundamental Stereology Principles and Interpretation
  • 3.3 3D Image Reconstruction
  • 3.4 Microstructural Quantities and Implications
  • 3.5 Microstructural Quantities in View of Damaged Continuum
  • 3.6 Damage Tensor and Quantification Method
  • 3.7 Other Studies
  • References
  • Chapter 4 Experimental Methods to Characterize the Heterogeneous Strain Field
  • 4.1 Introduction
  • 4.2 2D Methodology
  • 4.3 3D Methodology
  • 4.4 Digital Image Correlation Method
  • References
  • Chapter 5 Mixture Theory and Micromechanics Applications
  • 5.1 Mixture Theory and Its Application
  • 5.2 Micromechanics and Its Application
  • 5.3 Effective Properties of Mixture
  • 5.4 Micromechanics Application to Mastics and AC
  • 5.5 Doublet Mechanics
  • 5.6 Micromechanics Applications for Pavement Analysis
  • Suggested Readings
  • References
  • Chapter 6 Fundamentals of Phenomenological Models
  • 6.1 Elasticity
  • 6.2 Plasticity
  • 6.3 Viscoelasticity
  • 6.4 Viscoplasticity
  • 6.5 Continuum Damage Mechanics
  • 6.6 Fracture Mechanics
  • 6.7 General Considerations of Inelasticity
  • Suggested Readings
  • References
  • Chapter 7 Models for Asphalt Concrete
  • 7.1 Introduction
  • 7.2 Viscoplasticity with Damage
  • 7.3 Disturbed State Models
  • 7.4 The Benedito Model
  • 7.5 Viscoplastic Model with Microstructural Characteristics
  • 7.6 Temperature Dependent Viscoplastic Hierarchical Single Surface (HiSS) Model
  • 7.7 Stress-Dependent Elastoviscoplastic Constitutive Model with Damage
  • 7.8 3D Constitutive Model for Asphalt Pavements
  • 7.9 Generalization of the Models
  • 7.10 Fatigue Modeling
  • 7.11 Cohesive Zone Models for Numerical Simulations
  • 7.12 Other Fatigue Studies
  • 7.13 Non-Local Theory
  • References
  • Chapter 8 Finite Element Method and Boundary Element Method
  • 8.1 Introduction
  • 8.2 Numerical Solution Approaches to Elasticity Problems, FEM
  • 8.3 Interface Element
  • 8.4 Infinite Element and Rigid Element
  • 8.5 Constitutive Model Implementation—General
  • 8.6 Semi-Implicit Implementation of the SHRP Viscoplasticity Deformation Model
  • 8.7 Full Implicit Implementation of the Druker-Plager Model
  • 8.8 Boundary Element Method
  • Suggested Readings
  • References
  • Chapter 9 Applications of Discrete Element Method
  • 9.1 Introduction
  • 9.2 Fundamentals of DEM
  • 9.3 Shape Representation and Computational Efficiency Enhancement
  • 9.4 Validation of DEM Predictions at a Microscopic Level
  • 9.5 DEM Applications for AC
  • 9.6 Equivalent Ellipsoid Approach
  • 9.7 Combined FEM and DEM
  • 9.8 Similarities between DEM and Molecular Dynamics
  • References
  • Chapter 10 Digital Specimen and Digital Test-Integration of Microstructure into Simulation
  • 10.1 Introduction
  • 10.2 Digital Simple Performance Test of AC
  • 10.3 Digital Test for Simulative Test (APA Test)
  • 10.4 Other Approaches to Incorporate Microstructure into Simulation
  • 10.5 Extension to Other Materials
  • 10.6 Perspective for Digital Mix Design
  • References
  • Chapter 11 Simulation of Asphalt Compaction
  • 11.1 Introduction
  • 11.2 Lab Compaction
  • 11.3 Field Compaction
  • 11.4 Empirical Measurements of Compactibility
  • 11.5 Microscopic Study of Lab Compaction Process
  • 11.6 Perspective on Gradation Effect Representation
  • 11.7 Intelligent Compaction
  • 11.8 Compaction Simulations in Other Fields
  • References
  • Chapter 12 Characterization and Modeling Anisotropic Properties of Asphalt Concrete
  • 12.1 Introduction
  • 12.2 Orthotropic Elasticity
  • 12.3 Boussinesq’s Solution for Orthotropic Materials
  • 12.4 FEM Analysis of an Anisotropic Model Pavement
  • 12.5 Analytical Anisotropic Model of Multiple Layered System Pavement
  • 12.6 Characterization of the Anisotropic Properties Using a True Triaxial Testing Device
  • 12.7 Anisotropy in Compression and Tension
  • 12.8 Anisotropy in Permeability
  • 12.9 Anisotropic Behavior of Permanent Deformation
  • References
  • Chapter 13 Multiscale Modeling and Moisture Damage
  • 13.1 Introduction
  • 13.2 Multiscale Characterization and Modeling
  • 13.3 Moisture Damage of AC
  • 13.4 A Two-Scale Homogenization Method
  • 13.5 Future Development
  • References
  • Appendix 1 Eshelby’s Tensor (S) for Special Cases
  • Appendix 2 Laplace Transform
  • Appendix 3 Isotropic Elastostatics Fundamental Solution
  • Index