CITATION

Popescu, Gabriel. Quantitative Phase Imaging of Cells and Tissues. US: McGraw-Hill Professional, 2011.

Quantitative Phase Imaging of Cells and Tissues

Published:  June 2011

eISBN: 9780071663434 0071663436 | ISBN: 9780071663427
  • Contents
  • Foreword
  • Preface
  • Aknowledgments
  • 1 Introduction
  • 1.1 Light Microscopy
  • 1.2 Quantitative Phase Imaging (QPI)
  • 1.3 QPI and Multimodal Investigation
  • 1.4 Nanoscale and Three-Dimensional Imaging
  • References
  • 2 Groundwork
  • 2.1 Light Propagation in Free Space
  • 2.1.1 1D Propagation: Plane Waves
  • 2.1.2 3D Propagation: Spherical Waves
  • 2.2 Fresnel Approximation of Wave Propagation
  • 2.3 Fourier Transform Properties of Free Space
  • 2.4 Fourier Transformation Properties of Lenses
  • 2.5 (The First-Order) Born Approximation of Light Scattering in Inhomogeneous Media
  • 2.6 Scattering by Single Particles
  • 2.7 Particles Under the Born Approximation
  • 2.7.1 Spherical Particles
  • 2.7.2 Cubical Particles
  • 2.7.3 Cylindrical Particles
  • 2.8 Scattering from Ensembles of Particles within the Born Approximation
  • 2.9 Mie Scattering
  • Further Reading
  • 3 Spatiotemporal Field Correlations
  • 3.1 Spatiotemporal Correlation Function: Coherence Volume
  • 3.2 Spatial Correlations of Monochromatic Light
  • 3.2.1 Cross-Spectral Density
  • 3.2.2 Spatial Power Spectrum
  • 3.2.3 Spatial Filtering
  • 3.3 Temporal Correlations of Plane Waves
  • 3.3.1 Temporal Autocorrelation Function
  • 3.3.2 Optical Power Spectrum
  • 3.3.3 Spectral Filtering
  • References
  • 4 Image Characteristics
  • 4.1 Imaging as Linear Operation
  • 4.2 Resolution
  • 4.3 Signal-to-Noise Ratio (SNR)
  • 4.4 Contrast and Contrast-to-Noise Ratio
  • 4.5 Image Filtering
  • 4.5.1 Low-Pass Filtering
  • 4.5.2 Band-Pass Filter
  • 4.5.3 High-Pass Filter
  • References
  • 5 Light Microscopy
  • 5.1 Abbe’s Theory of Imaging
  • 5.2 Imaging of Phase Objects
  • 5.3 Zernike’s Phase Contrast Microscopy
  • References
  • Further Reading
  • 6 Holography
  • 6.1 Gabor’s (In-Line) Holography
  • 6.2 Leith and Upatnieks’s (Off-Axis) Holography
  • 6.3 Nonlinear (Real Time) Holography or Phase Conjugation
  • 6.4 Digital Holography
  • 6.4.1 Digital Hologram Writing
  • 6.4.2 Digital Hologram Reading
  • References
  • 7 Point-Scanning QPI Methods
  • 7.1 Low-Coherence Interferometry (LCI)
  • 7.2 Dispersion Effects
  • 7.3 Time-Domain Optical Coherence Tomography
  • 7.3.1 Depth-Resolution in OCT
  • 7.3.2 Contrast in OCT
  • 7.4 Fourier Domain and Swept Source OCT
  • 7.5 Qualitative Phase-Sensitive Methods
  • 7.5.1 Differential Phase-Contrast OCT
  • 7.5.2 Interferometric Phase-Dispersion Microscopy
  • 7.6 Quantitative Methods
  • 7.6.1 Phase-Referenced Interferometry
  • 7.6.2 Spectral-Domain QPI
  • 7.7 Further Developments
  • References
  • 8 Principles of Full-Field QPI
  • 8.1 Interferometric Imaging
  • 8.2 Temporal Phase Modulation: Phase-Shifting Interferometry
  • 8.3 Spatial Phase Modulation: Off-Axis Interferometry
  • 8.4 Phase Unwrapping
  • 8.5 Figures of Merit in QPI
  • 8.5.1 Temporal Sampling: Acquisition Rate
  • 8.5.2 Spatial Sampling: Transverse Resolution
  • 8.5.3 Temporal Stability: Temporal-Phase Sensitivity
  • 8.5.4 Spatial Uniformity: Spatial Phase Sensitivity
  • 8.6 Summary of QPI Approaches and Figures of Merit
  • References
  • 9 Off-Axis Methods
  • 9.1 Digital Holographic Microscopy (DHM)
  • 9.1.1 Principle
  • 9.1.2 Further Developments
  • 9.1.3 Biological Applications
  • 9.2 Hilbert Phase Microscopy (HPM)
  • 9.2.1 Principle
  • 9.2.2 Further Developments
  • 9.2.3 Biological Applications
  • References
  • 10 Phase-Shifting Methods
  • 10.1 Digitally Recorded Interference Microscopy with Automatic Phase Shifting (DRIMAPS)
  • 10.1.1 Principle
  • 10.1.2 Further Developments
  • 10.1.3 Applications
  • 10.2 Optical Quadrature Microscopy (OQM)
  • 10.2.1 Principle
  • 10.2.2 Further Developments
  • 10.2.3 Applications
  • References
  • 11 Common-Path Methods
  • 11.1 Fourier Phase Microscopy (FPM)
  • 11.1.1 Principle
  • 11.1.2 Further Developments
  • 11.1.3 Biological Applications
  • 11.2 Diffraction-Phase Microscopy (DPM)
  • 11.2.1 Principle
  • 11.2.2 Further Developments
  • 11.2.3 Biological Applications
  • References
  • 12 White Light Methods
  • 12.1 QPI Using the Transport of Intensity Equation
  • 12.1.1 Principle
  • 12.1.2 Further Developments
  • 12.1.3 Biological Applications
  • 12.2 Spatial Light Interference Microscopy (SLIM)
  • 12.2.1 Principle
  • 12.2.2 Further Developments
  • 12.2.3 Biological Applications
  • References
  • 13 Fourier Transform Light Scattering
  • 13.1 Principle
  • 13.1.1 Relevance of Light-Scattering Methods
  • 13.1.2 Fourier Transform Light Scattering (FTLS)
  • 13.2 Further Developments
  • 13.3 Biological Applications
  • 13.3.1 Elastic Light Scattering of Tissues
  • 13.3.2 Elastic Light Scattering of Cells
  • 13.3.3 Dynamic Light Scattering of Cell Membrane Fluctuations
  • 13.3.4 Dynamic Light Scattering of Cell Cytoskeleton Fluctuations
  • References
  • 14 Current Trends in Methods
  • 14.1 Tomography via QPI
  • 14.1.1 Computed Tomography (CT) Using Digital Holographic Microscopy
  • 14.1.2 Diffraction Tomography (DT) via Spatial Light Interference Microscopy
  • 14.2 Spectroscopic QPI
  • 14.2.1 Spectroscopic Diffraction-Phase Microscopy
  • 14.2.2 Instantaneous Spatial Light Interference Microscopy (iSLIM)
  • References
  • 15 Current Trends in Applications
  • 15.1 Cell Dynamics
  • 15.1.1 Background and Motivation
  • 15.1.2 Active Membrane Fluctuations
  • 15.1.3 Intracellular Mass Transport
  • 15.2 Cell Growth
  • 15.2.1 Background and Motivation
  • 15.2.2 Cell Cycle-Resolved Cell Growth
  • 15.3 Tissue Optics
  • 15.3.1 Background and Motivation
  • 15.3.2 Scattering-Phase Theorem
  • 15.3.3 Tissue-Scattering Properties from Organelle to Organ Scale
  • 15.4 Clinical Applications
  • 15.4.1 Background and Motivation
  • 15.4.2 Blood Screening
  • 15.4.3 Label-Free Tissue Diagnosis
  • References
  • A: Complex Analytic Signals
  • Further Reading
  • B: The Two-Dimensional and Three-Dimensional Fourier Transform
  • B.1 The 2D Fourier Transform
  • B.2 Two-Dimensional Convolution
  • B.3 Theorems Specific to Two-Dimensional Functions
  • B.4 Generalization of 1D Theorems
  • B.5 The Hankel Transform
  • B.6 The 3D Fourier Transform
  • B.7 Cylindrical Coordinates
  • B.8 Spherical Coordinates
  • References
  • C: QPI Artwork
  • Index