CITATION

Bianchi, Giovanni and Sorrentino, Roberto. Electronic Filter Simulation & Design. US: McGraw-Hill Education, 2007.

Electronic Filter Simulation & Design

Published:  2007

ISBN: 9780071712620 0071494677
  • Contents
  • Preface
  • Acknowledgments
  • 1 Basic Concepts
  • 1.0 Introduction
  • 1.1 Basic Definitions
  • 1.2 Mathematical Background
  • 1.2.1 Fourier Transform
  • 1.2.2 Laplace Transform
  • 1.3 Filter Responses
  • 1.3.1 Frequency Response
  • 1.3.2 Transfer Function
  • 1.3.3 Pulse Response
  • 1.3.4 Step Response
  • 1.4 Approximations of the Ideal Low-Pass Characteristic
  • 1.4.1 Butterworth Approximation
  • 1.4.2 Chebysheff Approximation
  • 1.4.3 Cauer Approximation
  • 1.4.4 Bessel Approximation
  • 1.4.5 Some Remarks on the Polynomial Filters
  • 1.5 Time Response
  • 1.5.1 Step Response
  • 1.5.2 Pulse Response
  • 1.6 Representation of 2-Port Linear Networks
  • 1.6.1 Impedance Matrix
  • 1.6.2 Admittance Matrix
  • 1.6.3 ABCD Matrix
  • 1.6.4 Scattering Matrix
  • 1.6.5 Image Parameters
  • 1.7 Related Files
  • References
  • 2 Lumped Passive Filters
  • 2.0 Introduction
  • 2.1 Lumped Passive 2-Port Networks
  • 2.2 Impedance and Frequency Normalization of a Low-Pass Filter
  • 2.3 Image Parameters for Low-Pass Filters
  • 2.3.1 Constant-k Low-Pass Filters
  • 2.3.2 Procedure for the Dual Filter Derivation
  • 2.3.3 m-Derived Low-Pass Filters
  • 2.3.4 Procedure for the m-Derived Filter Design
  • 2.4 Polynomial Low-Pass Filters
  • 2.4.1 Singly Terminated Polynomial Low-Pass Filters
  • 2.4.2 Doubly Terminated Polynomial Low-Pass Filters
  • 2.4.3 Some Remarks on Passive Polynomial Low-Pass Filters
  • 2.4.4 Closed-Form Synthesis Formulae for LC Low-Pass Filters
  • 2.5 Polynomial High-Pass, Band-Pass, and Notch Filters
  • 2.5.1 High-Pass Filters
  • 2.5.2 Band-Pass Filters
  • 2.5.3 Notch Filters (or Band-Stop Filters)
  • 2.6 Complementary Filters
  • 2.7 Limitations on Lumped Passive Filters
  • 2.7.1 Dissipation Loss
  • 2.7.2 Parasitic Elements
  • 2.8 Related Files
  • References
  • 3 Active RC Filters
  • 3.0 Introduction
  • 3.1 Operational Amplifiers
  • 3.1.1 Basic Configurations
  • 3.1.2 AC Response
  • 3.1.3 Stability
  • 3.1.4 Noise in Operational Amplifiers
  • 3.1.5 Opamp Dynamic Range
  • 3.2 Active Filters Simulating Passive LC Ladder Networks
  • 3.2.1 Simulation of Shunt Inductors
  • 3.2.2 Frequency-Dependent Negative Resistors
  • 3.3 Low-Pass Filters Realization with Bi-Quad Cells
  • 3.3.1 Factorization of Low-Pass Transfer Function
  • 3.3.2 Active Bi-Quad Cells
  • 3.3.3 Active Low-Pass Filter Examples
  • 3.4 Active High-Pass Filters
  • 3.5 Band-Pass Active Filters
  • 3.5.1 Real-Pole Band-Pass Mapping
  • 3.5.2 Complex Pole and Imaginary Zeroes Band-Pass Mapping
  • 3.5.3 Band-Pass Transfer Function Factorization
  • 3.5.4 An Example of an Active Band-Pass Filter
  • 3.6 Active Notch Filters
  • 3.6.1 Notch Response Factorization
  • 3.6.2 An Example of an Active Notch Filter
  • 3.7 All-Pass Filters
  • 3.8 Performances of the Active RC Filters
  • 3.8.1 Active Filter Noise
  • 3.8.2 Active Filter Dynamic Range
  • 3.8.3 Sensitivity
  • 3.8.4 Standard Component Values
  • 3.9 Related Files
  • References
  • 4 Transmission Lines
  • 4.0 Introduction
  • 4.1 Definitions
  • 4.2 Telegraphist Equation of the Uniform Multicoupled Transmission Lines
  • 4.3 Admittance Matrix of the TEM Multicoupled Lines
  • 4.4 Isolated Transmission Lines
  • 4.4.1 Loss-Free Isolated Transmission Lines
  • 4.4.2 Design Equations for Some Common Transmission Lines
  • 4.4.3 High-Order Modes
  • 4.4.4 Common Properties of Finite-Length Transmission Lines
  • 4.4.5 Lossy Transmission Lines
  • 4.5 Symmetrical Coupled Lines
  • 4.5.1 Even and Odd Modes
  • 4.5.2 Immittance Matrices
  • 4.5.3 Equivalent Circuits
  • 4.5.4 Design Equations for Symmetrical Coupled Lines
  • 4.6 Additional Analyses of Multicoupled Lines
  • 4.6.1 Equivalent Circuits
  • 4.6.2 Distributed Capacitance
  • 4.7 Additional Considerations About Transmission Lines
  • 4.8 Related Files
  • References
  • 5 Low-Pass and Band-Stop Distributed Filters
  • 5.0 Introduction
  • 5.1 Semi-Lumped Low-Pass Filters
  • 5.1.1 Design Principle
  • 5.1.2 Semi-Lumped Filter Design
  • 5.1.3 Limitations of the Semi-Lumped Filters
  • 5.2 Richards Transform
  • 5.3 Redundant Networks
  • 5.3.1 Impedance Inverters
  • 5.3.2 Kuroda Identities
  • 5.4 Band-Stop Filters
  • 5.4.1 Commensurate Band-Stop Filters
  • 5.4.2 Non-Commensurate Band-Stop Filters
  • 5.4.3 Examples of Distributed-Constant Filters
  • 5.5 Related Files
  • References
  • 6 High-Pass and Band-Pass Distributed Filters
  • 6.0 Introduction
  • 6.1 Semi-Lumped High-Pass Filters
  • 6.1.1 Semi-Lumped High-Pass Elements
  • 6.1.2 Semi-Lumped High-Pass Filter Synthesis
  • 6.1.3 Semi-Lumped High-Pass Filter Design
  • 6.2 Comb-Line Filters
  • 6.2.1 Synthesis of the Comb-Line Filters
  • 6.2.2 Analysis of the Comb-Line Filters
  • 6.2.3 An Example of a Comb-Line Filter
  • 6.3 Periodic Band-Pass Filters
  • 6.4 Interdigital Filters
  • 6.4.1 Synthesis Formulae for the Interdigital Filters
  • 6.4.2 An Example of a Narrow-Band Interdigital Filter
  • 6.5 Direct-Coupled Stub Filters
  • 6.5.1 Direct-Coupled Stub Synthesis Formulae
  • 6.5.2 Examples of Direct-Coupled Stub Filters
  • 6.6 Edge-Coupled Filters
  • 6.6.1 Narrow-Band Edge-Coupled Filters
  • 6.6.2 Wide-Band Edge-Coupled Filters
  • 6.6.3 Spurious Response in Edge-Coupled Filters
  • 6.7 Other Types of Pass-Band Filters and Design Techniques
  • 6.7.1 Pass-Band Filter Synthesis with the Coupling Coefficients
  • 6.7.2 Hairpin Filters
  • 6.7.3 Tapped Filters
  • 6.8 Related Files
  • References
  • 7 Special Designs of High-Frequency Filters
  • 7.0 Introduction
  • 7.1 Multiplexers
  • 7.1.1 An Example of a Noncontiguous Diplexer
  • 7.1.2 An Example of a Contiguous Triplexer
  • 7.2 Tunable Filters
  • 7.2.1 Varactor Characterization
  • 7.2.2 Tunable Comb-Lines
  • 7.2.3 Tunable Notch
  • 7.3 Active Filters
  • 7.3.1 Gallium Arsenide Field Effect Transistors
  • 7.3.2 Filters with Automatic Loss Compensation
  • 7.3.3 Filters with Automatic Frequency Control
  • 7.4 Pseudo-Elliptic Filters
  • 7.5 High-Power Filters
  • 7.6 Related Files
  • References
  • 8 Discrete-Time Filters
  • 8.0 Introduction
  • 8.1 Mathematical Background
  • 8.1.1 Z-Transform
  • 8.1.2 Discrete Fourier Transform
  • 8.1.3 Fourier Series
  • 8.2 Digital Signal Processing
  • 8.2.1 Sampling
  • 8.2.2 Quantization
  • 8.2.3 Quantization Distortion
  • 8.2.4 ADC Pulse Shaping
  • 8.2.5 Signal Interpolation
  • 8.2.6 Response of the Analog Channel
  • 8.3 Digital Filters
  • 8.3.1 Basic DSP Working Principles
  • 8.3.2 IIR Filters
  • 8.3.3 FIR Filters
  • 8.4 Switched-Capacitor Filters
  • 8.5 Related Files
  • References
  • 9 Waveguide Filters
  • 9.0 Introduction
  • 9.1 Propagation in Waveguides
  • 9.1.1 TE and TM Modes
  • 9.1.2 Phase Constant
  • 9.1.3 Dominant Mode
  • 9.1.4 Guided Wavelength
  • 9.1.5 Phase and Group Velocities
  • 9.1.6 Wave Impedance and Characteristic Impedance
  • 9.1.7 Rectangular Waveguide
  • 9.1.8 Ridge Waveguide
  • 9.1.9 Circular Waveguide
  • 9.2 Reactive Elements in Waveguide
  • 9.2.1 Shunt-Inductive Obstacles
  • 9.2.2 Shunt-Capacitive Obstacles
  • 9.3 Shunt-Inductive Loaded Filter
  • 9.3.1 Design Procedure
  • 9.3.2 Design Example
  • 9.3.3 Design Procedure for Wide-Band Filter
  • 9.3.4 Design Example
  • 9.4 Cross-Coupled Cavity Filters
  • 9.4.1 Elliptic and Generalized Chebysheff Filtering Functions
  • 9.4.2 Coupling Matrix Description for Narrow-Band Cross-Coupled Filters
  • 9.4.3 Rectangular Waveguide Realization
  • 9.4.4 Design Procedure of H-Plane and E-Plane Folded Filters
  • 9.4.5 Design Examples
  • 9.5 Dual-Mode Cavity Filters
  • 9.5.1 Dual-Mode Circular and Rectangular Cavity Filters
  • 9.6 Low-Pass Filters
  • 9.6.1 Tapered Corrugated Waveguide Filters
  • 9.6.2 Evanescent-Mode Ridged Waveguide Filters
  • 9.7 Related Files
  • References
  • Appendixes
  • Appendix A: Calculation of the Polynomial Coefficients from a Factorized Expression
  • Appendix B: Reflection Coefficients Zeroes of a Polynomial All-Pole Low-Pass Filter
  • Appendix C: Complementarity of the Singly Terminated Low-Pass and High-Pass Filters with the Same Cutoff Frequency, Order, and Load Resistance
  • Index