Sign in
|
Register
|
Mobile
Home
Browse
About us
Help/FAQ
Advanced search
Home
>
Browse
>
Practical DMX Queries for Microsoft SQL Server Analysis Services 2008
CITATION
Tennick, Art
.
Practical DMX Queries for Microsoft SQL Server Analysis Services 2008
.
US
: McGraw-Hill Osborne Media, 2010.
Add to Favorites
Email to a Friend
Download Citation
Practical DMX Queries for Microsoft SQL Server Analysis Services 2008
Authors:
Art Tennick
Published:
September 2010
eISBN:
9780071748674 0071748679
|
ISBN:
9780071748667
Open eBook
Book Description
Table of Contents
Contents
Acknowledgments
Introduction
Chapter 1 Cases Queries
Examining Source Data
Flattened Nested Case Table
Specific Source Columns
Examining Training Data
Examining Specific Cases
Examining Test Cases
Examining Model Cases Only
Examining Another Model
Expanding the Nested Table
Sorting Cases
Model and Structure Columns
Specific Model Columns
Distinct Column Values 1/2
Distinct Column Values 2/2
Cases by Cluster 1/4
Cases by Cluster 2/4
Cases by Cluster 3/4
Cases by Cluster 4/4
Content Query
Decision Tree Cases
Decision Tree Content
Time Series Cases
Sequence Clustering Cases 1/2
Sequence Clustering Cases 2/2
Neural Network and Naïve Bayes Cases
Order By with Top
Sequence Clustering Nodes 1/2
Sequence Clustering Nodes 2/2
Chapter 2 Content Queries
Content Query
Updating Cluster Captions
Content with New Caption
Changing Caption Back
Content Columns
Node Type
Flattened Content
Flattened Content with Subquery
Subquery Columns
Subquery Column Aliases
Subquery Where Clause
Individual Cluster Analysis
Demographic Analysis
Renaming Clusters
Querying Renamed Clusters
Clusters with Predictable Columns
Narrowing Down Content
Flattening Content Again
Some Tidying Up
More Tidying Up
Looking at Bike Buyers
Who Are the Best Customers?
How Did All Customers Do?
Decision Tree Content
Decision Tree Node Types
Decision Tree Content Columns
Flattened Column
Honing the Result
Just the Bike Buyers
Tidying Up
VBA in DMX
Association Content
Market Basket Analysis
Naïve Bayes Content
Naïve Bayes Node Type
Flattening Naïve Bayes Content
Naïve Bayes Content Subquery 1/2
Naïve Bayes Content Subquery 2/2
Chapter 3 Prediction Queries with Decision Trees
Select on Mining Model 1/6
Select on Mining Model 2/6
Select on Mining Model 3/6
Select on Mining Model 4/6
Select on Mining Model 5/6
Select on Mining Model 6/6
Prediction Query
Aliases and Formatting
Natural Prediction Join
More Demographics
Natural Prediction Join Broken
Natural Prediction Join Fixed
Nonmodel Columns
Ranking Probabilities
Predicted Versus Actual
Bike Buyers Only
More Demographics
Choosing Inputs 1/3
Choosing Inputs 2/3
Choosing Inputs 3/3
All Inputs and All Customers
Singletons 1/6
Singletons 2/6
Singletons 3/6
Singletons 4/6
Singletons 5/6
Singletons 6/6
New Customers
New Bike-Buying Customers
A Cosmetic Touch
PredictHistogram() 1/2
PredictHistogram() 2/2
Chapter 4 Prediction Queries with Time Series
Analyzing All Existing Sales
Analyzing Existing Sales by Category
Analyzing Existing Sales by Specific Periods—Lag() 1/3
Analyzing Existing Sales by Specific Periods—Lag() 2/3
Analyzing Existing Sales by Specific Periods—Lag() 3/3
PredictTimeSeries() 1/11
PredictTimeSeries() 2/11
PredictTimeSeries() 3/11
PredictTimeSeries() 4/11
PredictTimeSeries() 5/11
PredictTimeSeries() 6/11
PredictTimeSeries() 7/11
PredictTimeSeries() 8/11
PredictTimeSeries() 9/11
PredictTimeSeries() 10/11
PredictTimeSeries() 11/11
PredictStDev()
What-If 1/3
What-If 2/3
What-If 3/3
Chapter 5 Prediction and Cluster Queries with Clustering
Cluster Membership 1/3
Cluster Membership 2/3
Cluster Membership 3/3
ClusterProbability() 1/2
ClusterProbability() 2/2
Clustering Parameters
Another ClusterProbability
Cluster Content 1/2
Cluster Content 2/2
PredictCaseLikelihood() 1/3
PredictCaseLikelihood() 2/3
PredictCaseLikelihood() 3/3
Anomaly Detection
Cluster with Predictable Column 1/3
Cluster with Predictable Column 2/3
Cluster with Predictable Column 3/3
Clusters and Predictions
Chapter 6 Prediction Queries with Association and Sequence Clustering
Association Content—Item Sets
Association Content—Rules
Important Rules
Twenty Most Important Rules
Particular Product Models
Another Product Model
Nested Table
PredictAssociation()
Cross-Selling Prediction 1/7
Cross-Selling Prediction 2/7
Cross-Selling Prediction 3/7
Cross-Selling Prediction 4/7
Cross-Selling Prediction 5/7
Cross-Selling Prediction 6/7
Cross-Selling Prediction 7/7
Sequence Clustering Prediction 1/3
Sequence Clustering Prediction 2/3
Sequence Clustering Prediction 3/3
Chapter 7 Data Definition Language (DDL) Queries
Creating a Mining Structure
Creating a Mining Model
Training a Mining Model
Structure Cases
Model Cases
Model Content
Model Predict
Specifying Structure Holdout
Specifying Model Parameter
Specifying Model Filter
Specifying Model Drill-through
Training the New Models
Cases—with No Drill-through
Cases—with Drill-through
Structure with Holdout
Specifying Model Parameter, Filter, and Drill-through
Training New Model
Unprocessing a Structure
Model Cases with Filter and Drill-through
Clearing Out Cases
Removing Models
Removing Structures
Renaming a Model
Renaming a Structure
Making Backups
Removing the Backed-up Structure
Restoring a Backup
Structure with Nested Case Table
Model Using Nested Case Table
Model Training with Nested Case Table
Prediction Queries with Nested Cases 1/2
Prediction Queries with Nested Cases 2/2
Cube—Mining Structure
Cube—Mining Model
Cube—Model Training
Cube—Structure Cases
Cube—Model Content
Cube—Model Prediction
Chapter 8 Schema and Column Queries
DMSCHEMA_MINING_SERVICES 1/2
DMSCHEMA_MINING_SERVICES 2/2
DMSCHEMA_MINING_SERVICE_PARAMETERS 1/2
DMSCHEMA_MINING_SERVICE_PARAMETERS 2/2
DMSCHEMA_MINING_MODELS 1/3
DMSCHEMA_MINING_MODELS 2/3
DMSCHEMA_MINING_MODELS 3/3
DMSCHEMA_MINING_COLUMNS 1/3
DMSCHEMA_MINING_COLUMNS 2/3
DMSCHEMA_MINING_COLUMNS 3/3
DMSCHEMA_MINING_MODEL_CONTENT 1/5
DMSCHEMA_MINING_MODEL_CONTENT 2/5
DMSCHEMA_MINING_MODEL_CONTENT 3/5
DMSCHEMA_MINING_MODEL_CONTENT 4/5
DMSCHEMA_MINING_MODEL_CONTENT 5/5
DMSCHEMA_MINING_FUNCTIONS 1/3
DMSCHEMA_MINING_FUNCTIONS 2/3
DMSCHEMA_MINING_FUNCTIONS 3/3
DMSCHEMA_MINING_STRUCTURES 1/2
DMSCHEMA_MINING_STRUCTURES 2/2
DMSCHEMA_MINING_STRUCTURE_COLUMNS 1/3
DMSCHEMA_MINING_STRUCTURE_COLUMNS 2/3
DMSCHEMA_MINING_STRUCTURE_COLUMNS 3/3
DMSCHEMA_MINING_MODEL_XML 1/2
DMSCHEMA_MINING_MODEL_CONTENT_PMML
DMSCHEMA_MINING_MODEL_XML 2/2
Discrete Model Columns 1/5
Discrete Model Columns 2/5
Discrete Model Columns 3/5
Discrete Model Columns 4/5
Discrete Model Columns 5/5
Discretized Model Column
Discretized Model Column—Minimum
Discretized Model Column—Maximum
Discretized Model Column—Mid Value
Discretized Model Column—Range Values
Discretized Model Column—Spread
Continuous Model Column—Spread
Chapter 9 After You Finish
Where to Use DMX
SSRS
SSIS
SQL
XMLA
Winforms and Webforms
Third-Party Software
Copy and Paste
Appendix A: Graphical Content Queries
Content Queries
Graphical Content Queries in SSMS
Clustering Model
Time Series Model
Association Rules Model
Decision Trees Model
Graphical Content Queries in Excel 2007
Data Mining Ribbon
Table Tools/Analyze Ribbon
Graphical Content Queries in BIDS
Opening the Adventure Works Solution
Reverse-Engineering the Adventure Works Database
Adventure Works Database in Connected Mode
Viewing Content
Tracing Generated DMX
Excel Data Mining Functions
Appendix B: Graphical Prediction Queries
Prediction Queries
SSMS Prediction Queries
SSRS Prediction Queries
SSIS Prediction Queries
Control Flow
Data Flow
SSAS Prediction Queries
Building a Prediction Query
Clustering Prediction Queries
Time Series Prediction Queries
Association Prediction Queries
Decision Trees Prediction Queries
Excel Prediction Queries
Excel Data Mining Functions
Appendix C: Graphical DDL Queries
DDL Queries
SSAS in BIDS
Excel 2007/2010
SSIS in BIDS
Index