CITATION

Tennick, Art. Practical DMX Queries for Microsoft SQL Server Analysis Services 2008. US: McGraw-Hill Osborne Media, 2010.

Practical DMX Queries for Microsoft SQL Server Analysis Services 2008

Authors:

Published:  September 2010

eISBN: 9780071748674 0071748679 | ISBN: 9780071748667
  • Contents
  • Acknowledgments
  • Introduction
  • Chapter 1 Cases Queries
  • Examining Source Data
  • Flattened Nested Case Table
  • Specific Source Columns
  • Examining Training Data
  • Examining Specific Cases
  • Examining Test Cases
  • Examining Model Cases Only
  • Examining Another Model
  • Expanding the Nested Table
  • Sorting Cases
  • Model and Structure Columns
  • Specific Model Columns
  • Distinct Column Values 1/2
  • Distinct Column Values 2/2
  • Cases by Cluster 1/4
  • Cases by Cluster 2/4
  • Cases by Cluster 3/4
  • Cases by Cluster 4/4
  • Content Query
  • Decision Tree Cases
  • Decision Tree Content
  • Time Series Cases
  • Sequence Clustering Cases 1/2
  • Sequence Clustering Cases 2/2
  • Neural Network and Naïve Bayes Cases
  • Order By with Top
  • Sequence Clustering Nodes 1/2
  • Sequence Clustering Nodes 2/2
  • Chapter 2 Content Queries
  • Content Query
  • Updating Cluster Captions
  • Content with New Caption
  • Changing Caption Back
  • Content Columns
  • Node Type
  • Flattened Content
  • Flattened Content with Subquery
  • Subquery Columns
  • Subquery Column Aliases
  • Subquery Where Clause
  • Individual Cluster Analysis
  • Demographic Analysis
  • Renaming Clusters
  • Querying Renamed Clusters
  • Clusters with Predictable Columns
  • Narrowing Down Content
  • Flattening Content Again
  • Some Tidying Up
  • More Tidying Up
  • Looking at Bike Buyers
  • Who Are the Best Customers?
  • How Did All Customers Do?
  • Decision Tree Content
  • Decision Tree Node Types
  • Decision Tree Content Columns
  • Flattened Column
  • Honing the Result
  • Just the Bike Buyers
  • Tidying Up
  • VBA in DMX
  • Association Content
  • Market Basket Analysis
  • Naïve Bayes Content
  • Naïve Bayes Node Type
  • Flattening Naïve Bayes Content
  • Naïve Bayes Content Subquery 1/2
  • Naïve Bayes Content Subquery 2/2
  • Chapter 3 Prediction Queries with Decision Trees
  • Select on Mining Model 1/6
  • Select on Mining Model 2/6
  • Select on Mining Model 3/6
  • Select on Mining Model 4/6
  • Select on Mining Model 5/6
  • Select on Mining Model 6/6
  • Prediction Query
  • Aliases and Formatting
  • Natural Prediction Join
  • More Demographics
  • Natural Prediction Join Broken
  • Natural Prediction Join Fixed
  • Nonmodel Columns
  • Ranking Probabilities
  • Predicted Versus Actual
  • Bike Buyers Only
  • More Demographics
  • Choosing Inputs 1/3
  • Choosing Inputs 2/3
  • Choosing Inputs 3/3
  • All Inputs and All Customers
  • Singletons 1/6
  • Singletons 2/6
  • Singletons 3/6
  • Singletons 4/6
  • Singletons 5/6
  • Singletons 6/6
  • New Customers
  • New Bike-Buying Customers
  • A Cosmetic Touch
  • PredictHistogram() 1/2
  • PredictHistogram() 2/2
  • Chapter 4 Prediction Queries with Time Series
  • Analyzing All Existing Sales
  • Analyzing Existing Sales by Category
  • Analyzing Existing Sales by Specific Periods—Lag() 1/3
  • Analyzing Existing Sales by Specific Periods—Lag() 2/3
  • Analyzing Existing Sales by Specific Periods—Lag() 3/3
  • PredictTimeSeries() 1/11
  • PredictTimeSeries() 2/11
  • PredictTimeSeries() 3/11
  • PredictTimeSeries() 4/11
  • PredictTimeSeries() 5/11
  • PredictTimeSeries() 6/11
  • PredictTimeSeries() 7/11
  • PredictTimeSeries() 8/11
  • PredictTimeSeries() 9/11
  • PredictTimeSeries() 10/11
  • PredictTimeSeries() 11/11
  • PredictStDev()
  • What-If 1/3
  • What-If 2/3
  • What-If 3/3
  • Chapter 5 Prediction and Cluster Queries with Clustering
  • Cluster Membership 1/3
  • Cluster Membership 2/3
  • Cluster Membership 3/3
  • ClusterProbability() 1/2
  • ClusterProbability() 2/2
  • Clustering Parameters
  • Another ClusterProbability
  • Cluster Content 1/2
  • Cluster Content 2/2
  • PredictCaseLikelihood() 1/3
  • PredictCaseLikelihood() 2/3
  • PredictCaseLikelihood() 3/3
  • Anomaly Detection
  • Cluster with Predictable Column 1/3
  • Cluster with Predictable Column 2/3
  • Cluster with Predictable Column 3/3
  • Clusters and Predictions
  • Chapter 6 Prediction Queries with Association and Sequence Clustering
  • Association Content—Item Sets
  • Association Content—Rules
  • Important Rules
  • Twenty Most Important Rules
  • Particular Product Models
  • Another Product Model
  • Nested Table
  • PredictAssociation()
  • Cross-Selling Prediction 1/7
  • Cross-Selling Prediction 2/7
  • Cross-Selling Prediction 3/7
  • Cross-Selling Prediction 4/7
  • Cross-Selling Prediction 5/7
  • Cross-Selling Prediction 6/7
  • Cross-Selling Prediction 7/7
  • Sequence Clustering Prediction 1/3
  • Sequence Clustering Prediction 2/3
  • Sequence Clustering Prediction 3/3
  • Chapter 7 Data Definition Language (DDL) Queries
  • Creating a Mining Structure
  • Creating a Mining Model
  • Training a Mining Model
  • Structure Cases
  • Model Cases
  • Model Content
  • Model Predict
  • Specifying Structure Holdout
  • Specifying Model Parameter
  • Specifying Model Filter
  • Specifying Model Drill-through
  • Training the New Models
  • Cases—with No Drill-through
  • Cases—with Drill-through
  • Structure with Holdout
  • Specifying Model Parameter, Filter, and Drill-through
  • Training New Model
  • Unprocessing a Structure
  • Model Cases with Filter and Drill-through
  • Clearing Out Cases
  • Removing Models
  • Removing Structures
  • Renaming a Model
  • Renaming a Structure
  • Making Backups
  • Removing the Backed-up Structure
  • Restoring a Backup
  • Structure with Nested Case Table
  • Model Using Nested Case Table
  • Model Training with Nested Case Table
  • Prediction Queries with Nested Cases 1/2
  • Prediction Queries with Nested Cases 2/2
  • Cube—Mining Structure
  • Cube—Mining Model
  • Cube—Model Training
  • Cube—Structure Cases
  • Cube—Model Content
  • Cube—Model Prediction
  • Chapter 8 Schema and Column Queries
  • DMSCHEMA_MINING_SERVICES 1/2
  • DMSCHEMA_MINING_SERVICES 2/2
  • DMSCHEMA_MINING_SERVICE_PARAMETERS 1/2
  • DMSCHEMA_MINING_SERVICE_PARAMETERS 2/2
  • DMSCHEMA_MINING_MODELS 1/3
  • DMSCHEMA_MINING_MODELS 2/3
  • DMSCHEMA_MINING_MODELS 3/3
  • DMSCHEMA_MINING_COLUMNS 1/3
  • DMSCHEMA_MINING_COLUMNS 2/3
  • DMSCHEMA_MINING_COLUMNS 3/3
  • DMSCHEMA_MINING_MODEL_CONTENT 1/5
  • DMSCHEMA_MINING_MODEL_CONTENT 2/5
  • DMSCHEMA_MINING_MODEL_CONTENT 3/5
  • DMSCHEMA_MINING_MODEL_CONTENT 4/5
  • DMSCHEMA_MINING_MODEL_CONTENT 5/5
  • DMSCHEMA_MINING_FUNCTIONS 1/3
  • DMSCHEMA_MINING_FUNCTIONS 2/3
  • DMSCHEMA_MINING_FUNCTIONS 3/3
  • DMSCHEMA_MINING_STRUCTURES 1/2
  • DMSCHEMA_MINING_STRUCTURES 2/2
  • DMSCHEMA_MINING_STRUCTURE_COLUMNS 1/3
  • DMSCHEMA_MINING_STRUCTURE_COLUMNS 2/3
  • DMSCHEMA_MINING_STRUCTURE_COLUMNS 3/3
  • DMSCHEMA_MINING_MODEL_XML 1/2
  • DMSCHEMA_MINING_MODEL_CONTENT_PMML
  • DMSCHEMA_MINING_MODEL_XML 2/2
  • Discrete Model Columns 1/5
  • Discrete Model Columns 2/5
  • Discrete Model Columns 3/5
  • Discrete Model Columns 4/5
  • Discrete Model Columns 5/5
  • Discretized Model Column
  • Discretized Model Column—Minimum
  • Discretized Model Column—Maximum
  • Discretized Model Column—Mid Value
  • Discretized Model Column—Range Values
  • Discretized Model Column—Spread
  • Continuous Model Column—Spread
  • Chapter 9 After You Finish
  • Where to Use DMX
  • SSRS
  • SSIS
  • SQL
  • XMLA
  • Winforms and Webforms
  • Third-Party Software
  • Copy and Paste
  • Appendix A: Graphical Content Queries
  • Content Queries
  • Graphical Content Queries in SSMS
  • Clustering Model
  • Time Series Model
  • Association Rules Model
  • Decision Trees Model
  • Graphical Content Queries in Excel 2007
  • Data Mining Ribbon
  • Table Tools/Analyze Ribbon
  • Graphical Content Queries in BIDS
  • Opening the Adventure Works Solution
  • Reverse-Engineering the Adventure Works Database
  • Adventure Works Database in Connected Mode
  • Viewing Content
  • Tracing Generated DMX
  • Excel Data Mining Functions
  • Appendix B: Graphical Prediction Queries
  • Prediction Queries
  • SSMS Prediction Queries
  • SSRS Prediction Queries
  • SSIS Prediction Queries
  • Control Flow
  • Data Flow
  • SSAS Prediction Queries
  • Building a Prediction Query
  • Clustering Prediction Queries
  • Time Series Prediction Queries
  • Association Prediction Queries
  • Decision Trees Prediction Queries
  • Excel Prediction Queries
  • Excel Data Mining Functions
  • Appendix C: Graphical DDL Queries
  • DDL Queries
  • SSAS in BIDS
  • Excel 2007/2010
  • SSIS in BIDS
  • Index