CITATION

Roberge, Pierre. Handbook of Corrosion Engineering 2/E. US: McGraw-Hill Professional, 2012.

Handbook of Corrosion Engineering 2/E

Published:  June 2012

eISBN: 9780071750387 007175038X | ISBN: 9780071750370
  • Handbook of Corrosion Engineering
  • About the Author
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1: Introduction
  • 1.1 The Study of Corrosion
  • 1.2 Visualizing Corrosion Cells
  • 1.3 A Simple Corrosion Model
  • 1.3.1 Anodic Processes
  • 1.3.2 Cathodic Processes
  • 1.3.3 Faraday’s Law
  • 1.4 So, What is Corrosion?
  • 1.5 Strategic Impact and Cost of Corosion Damage
  • References
  • Chapter 2: Environments
  • 2.1 Atmospheric Corosion
  • 2.1.1 Outdoor Atmospheres
  • 2.1.2 Indoor Atmospheres
  • 2.1.3 Atmospheric Corrosivity Factors and their Measurement
  • Relative Humidity (RH), Dewpoint, and Time of Wetness (TOW)
  • Aerosol Particles
  • Pollutants
  • Atmospheric Corrosivity
  • 2.1.4 Maps of Atmospheric Corrosivity
  • 2.1.5 Prevention and Control
  • Materials Selection
  • Dehumidification
  • 2.2 Corosion in Water
  • 2.2.1 Corrosion and Water Quality/Availability
  • Corrosion Impact
  • Corrosion Management
  • Condition Assessment Techniques
  • 2.2.2 Types of Water
  • Natural Waters
  • Treated Waters
  • 2.2.3 Cooling Water Systems
  • Once-Through Systems
  • Closed Recirculated Systems
  • Open Recirculated Systems
  • Heat Exchangers
  • 2.2.4 Steam-Generating Systems
  • Treatment of Boiler Feedwater Makeup
  • Fossil Fuel Steam Plants
  • Supercritical Steam Plants
  • Waste Heat Boilers
  • Nuclear Boiling Water Reactors (BWRs)
  • Nuclear Pressurized Water Reactors (PWRs)
  • Corrosion Costs to the Power Industry
  • 2.2.5 Water Treatment
  • Corrosion Inhibitors
  • Scale Control
  • Microorganisms
  • Types of Ion Exchange Resins
  • 2.2.6 Scaling Indices
  • Langelier Saturation Index (LSI)
  • Other Indices
  • 2.3 Corosion in Seawater
  • 2.3.1 Salinity
  • 2.3.2 Oxygen
  • 2.3.3 Organic Compounds
  • 2.3.4 Polluted Seawater
  • 2.3.5 Calcareous Deposits
  • Calculation Examples
  • 2.3.6 Corrosion Resistance of Materials in Seawater
  • Carbon Steel
  • Stainless Steels
  • Nickel-Based Alloys
  • Copper-Based Alloys
  • Effect of Flow Velocity
  • Effect of Temperature
  • 2.4 Corosion in Soils
  • 2.4.1 Soil Classification
  • 2.4.2 Soil Parameters Affecting Corrosivity
  • 2.4.3 Soil Corrosivity Classifications
  • 2.4.4 Soil Corrosion Cells
  • Galvanic Corrosion
  • Concentration Cells
  • Oxygen Concentration Cells
  • Temperature Cells
  • Stray Currents
  • Stress Cells
  • Surface Film Cells
  • 2.4.5 Auxiliary Effects of Corrosion Cells
  • Hydrogen
  • Electroendosmosis
  • Cathode Scale
  • Pitting
  • 2.4.6 Examples of Buried Systems
  • Pipelines
  • Distribution Systems
  • Gathering Systems
  • Plant Piping
  • Well Casings
  • Underground Tanks
  • Steel Piling
  • Transmission and Communication Towers
  • 2.4.7 Corrosion of Materials Other Than Steel
  • Cast Iron
  • Aluminum
  • Zinc
  • Lead
  • Stainless Steels
  • Copper and Alloys
  • Concrete
  • Polymeric Materials
  • 2.5 Reinforced Concrete
  • 2.5.1 Degradation of Reinforced Concrete
  • Corrosion Damage
  • Chloride Attack
  • Carbonation-Induced Corrosion
  • Synergy between Chlorides and Carbonation Attack
  • 2.5.2 Remedial Measures
  • Repair Techniques
  • Electrochemical Techniques
  • New Construction—Rebar Options
  • Corrosion Inhibitors
  • Concrete Cover and Mix Design
  • 2.5.3 Condition Assessment of Reinforced Concrete Structures
  • Electrochemical Corrosion Measurements
  • Chloride Content
  • Petrographic Examination
  • Permeability Tests
  • 2.5.4 Other Forms of Concrete Degradation
  • Alkali-Aggregate Reaction
  • Freeze-Thaw Damage
  • Sulfate Attack
  • 2.6 Microbes and Biofouling
  • 2.6.1 Examples of Microbial Corrosion
  • 2.6.2 Nature of Biofilms
  • 2.6.3 Biofilm Formation and Growth
  • 2.6.4 Marine Biofouling
  • 2.6.5 Problems Associated with Biofilms
  • Friction Factor
  • Heat Exchange
  • 2.6.6 Biocorrosion Mechanisms
  • 2.6.7 Microbes Classification
  • Fungi
  • Algae
  • Bacteria
  • 2.6.8 Monitoring Microbiologically Influenced Corrosion
  • Sampling
  • Biological Assessment
  • Monitoring MIC Effects
  • 2.6.9 Biofilm Control
  • Biocides
  • A Practical Example: Ozone Treatment for Cooling Towers
  • References
  • Chapter 3: High-Temperature Corrosion
  • 3.1 Introduction
  • 3.2 Thermodynamic Principles
  • 3.2.1 Standard Free Energy of Formation
  • 3.2.2 Vapor Species Diagrams
  • 3.2.3 2D Isothermal Stability Diagrams
  • 3.3 Kinetic Principles
  • 3.3.1 Scale as a Diffusion Barrier
  • 3.3.2 Basic Kinetic Models
  • Linear Behavior
  • Logarithmic Behavior
  • Parabolic Behavior
  • 3.3.3 Pilling-Bedworth Ratio
  • 3.4 Practical High-Temperature Corrosion Problems
  • 3.4.1 Oxidation
  • 3.4.2 Sulfidation
  • 3.4.3 Carburization
  • 3.4.4 Metal Dusting
  • 3.4.5 Nitridation
  • 3.4.6 Gaseous Halogen Corrosion
  • 3.4.7 Fuel Ash and Salt Deposits
  • 3.4.8 Corrosion by Molten Salts
  • 3.4.9 Corrosion in Liquid Metals
  • References
  • Chapter 4: Modeling, Life Prediction, and Computer Applications
  • 4.1 Models, Computers, and Corosion
  • 4.2 Historical Notes
  • 4.3 Improvement in Computer and Comunication Technologies
  • 4.4 The Botom-Up Approach
  • 4.4.1 Mechanistic Models
  • Pollutant Mass Transfer to a Surface
  • Marine Aerosol Transport
  • Corrosion Under a Droplet
  • Wind Speed Factor
  • Ion Association Model
  • 4.4.2 Probabilistic Models
  • Normal Distribution
  • Log-Normal Distribution
  • Exponential Distribution
  • Poisson Distribution
  • Extreme Value Statistics
  • Failure of Nuclear Waste Containers
  • ISO CORRAG
  • International Cooperative Program on Effects on Materials
  • Iberoamerican Atmospheric Corrosion Map Project (MICAT)
  • Topographical Effects on Wind Velocity
  • 4.5 Top-Down Corosion Models
  • 4.5.1 Corrosion Management Framework
  • Clear Policies and Objectives
  • Organizational Structure and Responsibilities
  • Planning, Procedures, and Implementation
  • Monitoring and Measuring Performance
  • Review Performance
  • Audits
  • 4.5.2 Risk-Based Models
  • 4.5.3 Knowledge-Based Models
  • Expert Systems
  • Neural Networks
  • Case-Based Reasoning
  • 4.6 Internet, the Web, and Corosion
  • 4.6.1 Online Resources
  • Corrosion-Related Glossaries
  • Corrosion Guides
  • Special Reports
  • List Servers
  • 4.6.2 Online Training or Learning
  • A Taxonomy for Online Education
  • Examples of CBL Corrosion Courses
  • References
  • Chapter 5: Corrosion Failures
  • 5.1 Introduction
  • 5.2 Mechanisms and Forms of Corosion Failures
  • 5.2.1 General or Uniform Attack
  • 5.2.2 Localized Corrosion
  • Pitting Corrosion
  • Crevice Corrosion
  • Galvanic Corrosion
  • Deposition Corrosion
  • Dealloying
  • Intergranular Corrosion (IGC)
  • Exfoliation
  • Hydrogen Embrittlement
  • Hydrogen-Induced Cracking (HIC)
  • Hydrogen Blistering
  • 5.2.3 Flow-Induced Corrosion
  • Fluid Velocity Effects
  • Erosion-Corrosion and FAC
  • Cavitation
  • Solid Particle Impingement
  • 5.2.4 Mechanically Assisted Corrosion
  • Stress Corrosion Cracking (SCC)
  • Corrosion Fatigue
  • Fretting Corrosion
  • 5.3 Investigating Corosion Failures
  • 5.3.1 Guides for Investigating Corrosion Failures
  • 5.3.2 Conducting a Failure Analysis
  • Planning the Analysis
  • Conditions at the Failure Site
  • Operating Conditions at Time of Failure
  • Historical Information
  • Sampling
  • Evaluation of Samples
  • Assessment of Corrosion-Related Failure
  • References
  • Chapter 6: Corosion Maintenance through Inspection and Monitoring
  • 6.1 The Cost of Poor Maintenance
  • 6.2 Corosion Management Strategies
  • 6.3 Maintenance Strategies
  • 6.3.1 Corrective Maintenance
  • 6.3.2 Preventive Maintenance
  • 6.3.3 Predictive or Condition-Based Maintenance
  • 6.3.4 Reliability-Centered Maintenance
  • 6.4 Life-Cycle Asset Management
  • 6.5 Inspection Strategies
  • 6.5.1 What to Inspect?
  • Anticipated Failures (“Hot Spots”)
  • Corrosion-Based Design Analysis (CBDA)
  • 6.5.2 When to Inspect?—Key Performance Indicators
  • Cost of Corrosion KPI
  • Completed Maintenance KPI
  • Selecting KPIs
  • 6.5.3 Corrosion Monitoring or Corrosion Inspection?
  • 6.5.4 Risk-Based Inspection
  • Probability of Failure Assessment
  • Consequence of Failure Assessment
  • Application of RBI
  • 6.5.5 Risk-Assessment Methodologies
  • HAZOP
  • FMEA and FMECA
  • Risk Matrix Methods
  • Fault Tree Analysis (FTA)
  • Event Tree Analysis (ETA)
  • 6.6 Industrial Examples
  • 6.6.1 Transmission Pipelines
  • External Corrosion Damage Assessment (ECDA)
  • Internal Corrosion Damage Assessment (ICDA)
  • Hydrostatic Testing
  • In-line Inspection (ILI)
  • 6.6.2 Offshore Pipeline—Risers
  • 6.6.3 Process Industry
  • 6.6.4 Power Industry
  • Corrosion Product Activation and Deposition
  • Pressurized Water Reactor Steam Generator Tube Corrosion
  • Boiler Tube Waterside/Steamside Corrosion
  • Heat Exchanger Corrosion
  • SCC and CF in Turbines
  • Fuel Cladding Corrosion
  • Corrosion in Electric Generators
  • Flow-Accelerated Corrosion (FAC)
  • Corrosion of Raw Water Piping
  • IGSCC of BWR Piping and Internals
  • 6.6.5 The RIMAP Project
  • Process Industry
  • Offshore Industry
  • Power Industry
  • 6.6.6 Aircraft Maintenance
  • Corrosion Definition
  • Maintenance Schedule
  • Corrosion Management Assessment
  • Maintenance Steering Group (MSG) System
  • 6.7 What is Corosion Monitoring?
  • 6.8 Corosion-monitoring techniques
  • 6.8.1 Direct Intrusive Techniques
  • Physical Techniques
  • Electrochemical Techniques
  • 6.8.2 Direct Nonintrusive Techniques
  • Thin Layer Activation (TLA) and Gamma Radiography
  • Field Signature Method (FSM)
  • Acoustic Emission (AE)
  • 6.8.3 Indirect Online Techniques
  • Hydrogen Monitoring
  • Corrosion Potential
  • Online Water Chemistry Analyses
  • Process Variables
  • Fouling
  • 6.8.4 Indirect Off-line Measurement Techniques
  • Off-line Water Chemistry Parameters
  • Residual Inhibitor
  • Chemical Analysis of Process Samples
  • 6.9 Corosion-Monitoring Locations
  • 6.10 Corosion-Monitoring Systems
  • 6.11 Integration in Proces Control
  • 6.12 Modeling the Corosion-Monitoring Response
  • 6.13 Probe Design and Selection
  • 6.13.1 Sensitivity and Response Time
  • 6.13.2 Flush-Mounted Electrode Design
  • 6.13.3 Protruding Electrode Design
  • 6.13.4 Probes to Suit the Application
  • Stress Corrosion Cracking Probe
  • Corrosion in Hydrocarbon Environments
  • Coupled Multielectrode Array Systems and Sensors
  • 6.14 Data Comunication and Analysis Requirements
  • References
  • Chapter 7: Corosion Testing
  • 7.1 Introduction
  • 7.2 Laboratory-Controled Tests
  • 7.2.1 Tests of the Metal
  • 7.2.2 Tests of Fabricated Items
  • 7.3 Field Tests
  • 7.4 Test Objectives
  • 7.5 Procurement of Test Materials
  • 7.5.1 Commercial Alloys
  • 7.5.2 Nonstandard Alloys
  • 7.5.3 Metal Form
  • 7.6 Specimen Preparation
  • 7.6.1 Size and Shape
  • Visual Examination
  • Depth of Attack
  • Weight Loss or Gain
  • Loss in Tensile Properties
  • Stress Corrosion Cracking Tests
  • Corrosivity of the Test Environment
  • Suitability to Other Test Purposes
  • 7.6.2 Specimen Identification
  • 7.6.3 Replicate Specimens
  • 7.6.4 Machining of Specimens
  • 7.6.5 Simulated Machining of Specimens
  • 7.6.6 Degreasing and Final Measurements
  • 7.7 Controls
  • 7.7.1 Control of the Metal
  • 7.7.2 Control of the Test Environment
  • 7.8 Specimen Arrangement for Corosion Tests
  • 7.9 Effects of Variables
  • 7.9.1 Temperature
  • 7.9.2 Solution Concentration
  • 7.9.3 Agitation
  • 7.9.4 Aeration
  • 7.9.5 Ultraviolet Light
  • 7.9.6 Microbial Effects
  • 7.10 Conducting the Test
  • 7.10.1 Records
  • 7.10.2 Interim Inspections
  • 7.10.3 The Unexpected
  • 7.10.4 Concluding the Test
  • 7.11 PostTest Appraisals
  • 7.11.1 Before Cleaning
  • 7.11.2 Analyses of Products and Solutions
  • 7.11.3 Cleaning the Specimens
  • 7.11.4 Weighing
  • Sample Calculation
  • 7.11.5 Visual Examination
  • 7.11.6 Photographs
  • 7.11.7 Mechanical and Physical Tests
  • 7.11.8 Microscopic Studies
  • 7.11.9 The Notebook
  • 7.12 Electrochemical Test Methods
  • 7.12.1 DC Polarization Test Methods
  • Linear Polarization Resistance (LPR)
  • Complications with Polarization Methods
  • 7.12.2 Electrochemical Impedance Spectroscopy
  • 7.12.3 Electrochemical Noise
  • Electrode Configuration
  • Signal Analysis
  • 7.12.4 Harmonic Distortion Analysis
  • 7.12.5 Zero-Resistance Ammetry
  • 7.13 Accelerated Test Environments
  • 7.13.1 Cabinet Tests
  • Controlled-Humidity Test
  • Corrosive Gas Test
  • Salt Spray Testing
  • 7.13.2 Immersion Testing
  • Simple Immersion Tests
  • Alternative Immersion Tests
  • Immersion Tests Under Load
  • 7.13.3 Flow-Induced Corrosion Testing
  • Mass-Transfer Coefficient
  • Rotating Systems
  • Flow Systems
  • 7.13.4 High-Temperature/High-Pressure Testing
  • Static Tests
  • Refreshed and Recirculating Tests
  • Factors Affecting HT/HP Test Environments
  • Special HT/HP Corrosion Test Conditions
  • 7.14 Surface Characterization Techniques
  • 7.14.1 General Sensitivity Problems
  • 7.14.2 Auger Electron Spectroscopy
  • 7.14.3 Photoelectron Spectroscopy
  • 7.14.4 Rutherford Backscattering
  • 7.14.5 Scanning Probe Microscopy (SPM/AFM)
  • 7.14.6 SAM and SEM
  • SEM
  • SAM
  • 7.14.7 Secondary Ion Mass Spectroscopy
  • References
  • Chapter 8: Engineering Materials: Selection and Design Considerations
  • 8.1 Materials Selection
  • 8.2 Corrosion-Aware Materials Selection
  • 8.2.1 Why Metals Corrode?
  • 8.2.2 How Metals Corrode?
  • 8.2.3 Multiple Material/Environment Combinations
  • 8.2.4 Precision of Corrosion Data
  • 8.2.5 Complexity of Materials/Performance Interactions
  • 8.3 Selection Compromises
  • 8.3.1 Life-Cycle Costing
  • 8.3.2 Condition Assessment
  • 8.3.3 Prioritization
  • 8.4 Materials Selection Road Map
  • 8.4.1 Identify Initial Slate of Candidate Materials
  • 8.4.2 Screen Materials Based on Past Experience
  • 8.4.3 Conduct Environmental Assessment
  • 8.4.4 Evaluate Materials Based on Potential Corrosion Failure Modes
  • 8.4.5 Select Corrosion Prevention and Control Methods
  • 8.5 Basics of Metalurgy
  • 8.5.1 Alloying
  • Phase Diagrams
  • Castings
  • 8.5.2 Heat Treatment of Metals
  • Annealing
  • Hardening Heat Treatments
  • Sensitization of Austenitic Stainless Steel
  • Welding
  • 8.5.3 Metallurgical Principles of Corrosion Prevention
  • High-Purity Metals
  • Alloy Additions
  • Heat Treatment
  • Metallurgical History and Corrosion
  • 8.6 Engineering Materials
  • 8.6.1 Aluminum and Its Alloys
  • Production of Aluminum
  • Mechanical Properties
  • Cast Aluminum
  • Wrought Aluminum
  • Special Aluminum Products
  • Temper Designation System for Aluminum Alloys
  • Applications
  • Weldability of Aluminum Alloys
  • Corrosion Resistance
  • 8.6.2 Cadmium
  • 8.6.3 Cast Irons
  • Carbon Presence Classification
  • Weldability
  • Corrosion Resistance
  • 8.6.4 Copper and Its Alloys
  • Weldability
  • Corrosion Resistance
  • Marine Application of Copper-Nickel Alloys
  • Decorative Corrosion Products
  • 8.6.5 High-Performance Alloys
  • Ni- and Fe-Ni-Base Alloys
  • Co-Base Alloys
  • Welding and Heat Treatments
  • Corrosion Resistance
  • Use of High-Performance Alloys
  • 8.6.6 Lead and Its Alloys
  • 8.6.7 Magnesium and Its Alloys
  • Magnesium Alloys
  • Processing and Properties
  • Corrosion Resistance
  • 8.6.8 Noble Metals
  • Gold
  • Platinum
  • Silver
  • 8.6.9 Refractory Metals
  • Molybdenum
  • Niobium
  • Tantalum
  • Tungsten
  • 8.6.10 Stainless Steels
  • Types of Stainless Steels
  • Welding, Heat Treatments, and Surface Finishes
  • Corrosion Resistance
  • 8.6.11 Steels
  • Carbon Steels
  • High-Strength Low-Alloy (HSLA) Steels
  • Weldability
  • Corrosion Resistance
  • 8.6.12 Tin and Tinplate
  • 8.6.13 Titanium and Its Alloys
  • Basic Properties
  • Titanium Alloys
  • Weldability
  • Applications
  • Corrosion Resistance
  • 8.6.14 Zinc and Its Alloys
  • 8.6.15 Zirconium
  • Applications
  • Corrosion Resistance
  • 8.7 Design Considerations
  • 8.7.1 Designing Adequate Drainage
  • 8.7.2 Adequate Joining and Attachments
  • References
  • Chapter 9: Protective Coatings
  • 9.1 Types of Coatings
  • 9.2 Why Coatings Fail?
  • 9.3 Soluble Salts and Coating Failures
  • 9.4 Economic Aspects of Coatings Selection and Maintenance
  • 9.5 Organic Coatings
  • 9.5.1 Coating Functionality
  • 9.5.2 Basic Components
  • Binders
  • Pigments
  • Solvents
  • 9.5.3 Temporary Preservatives
  • 9.5.4 Nonstick Coatings
  • 9.6 Inorganic (Nonmetallic) Coatings
  • 9.6.1 Hydraulic Cement
  • 9.6.2 Ceramics and Glass
  • 9.6.3 Anodizing
  • Anodizing Process
  • Properties of the Oxide Film
  • Sealing of Anodic Coatings
  • 9.6.4 Phosphatizing
  • 9.6.5 Chromate Filming
  • 9.6.6 Nitriding
  • 9.6.7 Passive Films
  • 9.6.8 Pack Cementation
  • 9.7 Metallic Coatings
  • 9.7.1 Electroplating
  • 9.7.2 Electroless Plating
  • 9.7.3 Hot-Dip Galvanizing
  • 9.7.4 Cladding
  • 9.7.5 Metalizing (Thermal Spray)
  • 9.8 Coating Inspection and Testing
  • 9.8.1 Condition of the Substrate
  • 9.8.2 Condition of the Existing Coating System
  • 9.8.3 Coating Inspection
  • 9.8.4 Laboratory Testing
  • 9.8.5 Holiday Detection
  • 9.9 Surface Preparation
  • 9.9.1 Principles of Coating Adhesion
  • 9.9.2 Abrasive Cleaning
  • 9.9.3 Water Jetting
  • 9.9.4 Wet Abrasive Blasting
  • 9.9.5 Other Surface Preparation Methods
  • References
  • Chapter 10: Corosion Inhibitors
  • 10.1 Basic Concepts
  • 10.1.1 Inhibitor Efficiency
  • 10.1.2 Inhibitor Availability
  • 10.1.3 Inhibitor Risk Categories
  • 10.1.4 Environmental Issues
  • Bioaccumulation
  • Biodegradation
  • Aquatic Toxicity
  • Selection of an Inhibitor for Environmental Compliance
  • 10.2 Types of Inhibitors
  • 10.2.1 Immersion Inhibitors
  • Anodic Passivating Inhibitors
  • Cathodic Inhibitors
  • Ohmic Inhibitors
  • Organic Inhibitors
  • Precipitation Inhibitors
  • 10.2.2 Atmospheric Inhibitors
  • Vapor-Phase Inhibitors
  • Corrosion Prevention Compounds
  • 10.3 Environmental Factors
  • 10.3.1 Aqueous Systems
  • Effects of Various Dissolved Species
  • Waters of Low-to-Moderate Salt Concentrations
  • High Salt Concentrations
  • Effects of pH
  • 10.3.2 Strong Acids
  • Adsorption of Corrosion Inhibitors onto Metals
  • Effects of Inhibitors on Corrosion Processes
  • 10.3.3 Near-Neutral Environments
  • 10.3.4 Nonaqueous Systems
  • 10.3.5 Inhibitors for Oil and Gas Systems
  • Sweet Corrosion
  • Sour Corrosion
  • Acidizing
  • Oxygen-lnfluenced Corrosion
  • Application Methods
  • 10.3.6 Gaseous Environments
  • The Open Atmosphere
  • Closed Vapor Spaces
  • 10.3.7 Effect of Elevated Temperatures
  • 10.4 Green Inhibitors
  • 10.4.1 Scale Inhibitors
  • 10.4.2 Corrosion Inhibitors
  • Inorganic Corrosion Inhibitors
  • Organic Corrosion Inhibitors
  • 10.5 Application Techniques
  • 10.5.1 Continuous Injection
  • 10.5.2 Batch Treatment
  • 10.5.3 Squeeze Treatment
  • 10.5.4 Volatilization
  • 10.5.5 Coatings
  • 10.5.6 System Condition
  • 10.5.7 Inhibitor Selection
  • 10.5.8 Concentration and Performance
  • 10.6 Safety Precautions
  • 10.6.1 Handling
  • 10.6.2 Disposal
  • 10.6.3 Heat Transfer
  • 10.6.4 Foaming
  • 10.6.5 Emulsions
  • References
  • Chapter 11: Cathodic Protection
  • 11.1 Cathodic Protection Historical Notes
  • 11.2 How CP Works in Water?
  • 11.2.1 Sacrificial CP
  • 11.2.2 Impressed Current CP
  • 11.3 How CP Works in Soils?
  • 11.3.1 Sacrificial CP
  • 11.3.2 Impressed Current CP
  • 11.3.3 Anode Beds
  • 11.3.4 Anode Backfill
  • 11.4 How CP Works in Concrete?
  • 11.4.1 Impressed Current Cathodic Protection
  • 11.4.2 Sacrificial Cathodic Protection
  • 11.5 Cathodic Protection Components
  • 11.5.1 Reference Electrodes
  • 11.5.2 Anodes
  • Sacrificial Anodes
  • ICCP Anodes
  • 11.5.3 Rectified Current Sources
  • 11.5.4 Other Current Sources
  • 11.5.5 Wires and Cables
  • 11.6 Soil Resistivity Measurements
  • 11.6.1 Four-Pin Method (Wenner Method)
  • 11.6.2 Alternate Soil Resistivity Methods
  • 11.7 Potential to Environment
  • 11.8 Current Requirement Tests
  • 11.8.1 Tests for a Coated System
  • 11.8.2 Tests for a Bare Structure
  • 11.9 Stray Current Effects
  • 11.10 Monitoring Pipeline CP Systems
  • 11.10.1 Close Interval Potential Surveys
  • 11.10.2 Pearson Survey
  • 11.10.3 Direct and Alternating Current Voltage Gradient Surveys
  • 11.10.4 Corrosion Coupons
  • 11.11 Simulation and Optimization of CP Designs
  • 11.11.1 Modeling Ship ICCP
  • 11.11.2 Modeling CP in the Presence of Interference
  • References
  • Chapter 12: Anodic Protection
  • 12.1 Basic Concepts
  • 12.2 Passivity of Metals
  • 12.3 Equipment Required for Anodic Protection
  • 12.3.1 Cathode
  • 12.3.2 Reference Electrode
  • 12.3.3 Potential Control and Power Supply
  • 12.4 Design Concerns
  • 12.5 Applications
  • 12.6 Practical Example: Anodic Protection in the Pulp and Paper Industry
  • References
  • Appendix A: Periodic Table
  • Appendix B: SI Units Conversion Table
  • Appendix C: Reference Electrodes
  • C.1 Purpose of a Reference Electrode
  • C.1.1 Conversion between Reference Electrodes
  • C.1.2 Silver/Silver Chloride Reference Electrode
  • C.1.3 Copper/Copper Sulfate Reference Electrode
  • References
  • Appendix D: Chemical Compositions of Engineering Alloys
  • Appendix E: Historical Perspective
  • References
  • Index