CITATION

Thambynayagam, R.K. Michael. The Diffusion Handbook: Applied Solutions for Engineers. US: McGraw-Hill Professional, 2011.

The Diffusion Handbook: Applied Solutions for Engineers

Published:  April 2011

eISBN: 9780071751858 0071751858 | ISBN: 9780071751841
  • Contents
  • Preface
  • 1 Preliminaries
  • 1.1 Introduction
  • 1.2 Nomenclature, symbols and iconic illustrations
  • 1.3 Mathematical operations of special functions
  • 1.4 The diffusion mode of transference of heat, mass and pressure
  • 2 Integral transforms and their inversion formulae
  • 2.1 Laplace transform
  • 2.2 Fourier transforms
  • 2.3 Finite Fourier transforms
  • 2.4 Hankel and Weber transforms
  • 2.5 Finite Hankel transforms
  • 3 Infinite and semi-infinite continua. p (x, t) is a function of x and t only
  • 3.1
  • 3.2
  • 3.3
  • 3.4
  • 4 Bounded continuum. p (x, t) is a function of x and t only
  • 4.1
  • 4.2
  • 4.3
  • 4.4
  • 4.5
  • 4.6
  • 4.7
  • 4.8
  • 4.9
  • 4.10
  • 5 Infinite and semi-infinite (quadrant) continua. p(x, y, t) is a function of x, y and t only
  • 5.1
  • 5.2
  • 5.3
  • 5.4
  • 5.5
  • 5.6
  • 5.7
  • 6 Infinite and semi-infinite lamellae. p(x, y, t) is a function of x, y and t only
  • 6.1
  • 6.2
  • 6.3
  • 6.4
  • 6.5
  • 6.6
  • 6.7
  • 6.8
  • 6.9
  • 6.10
  • 6.11
  • 6.12
  • 6.13
  • 6.14
  • 6.15
  • 6.16
  • 6.17
  • 6.18
  • 6.19
  • 6.20
  • 6.21
  • 6.22
  • 6.23
  • 6.24
  • 6.25
  • 6.26
  • 6.27
  • 6.28
  • 6.29
  • 6.30
  • 6.31
  • 6.32
  • 6.33
  • 6.34
  • 6.35
  • 6.36
  • 6.37
  • 6.38
  • 7 Rectangle. p(x, y, t) is a function of x, y and t only
  • 7.1
  • 7.2
  • 7.3
  • 7.4
  • 7.5
  • 7.6
  • 7.7
  • 7.8
  • 7.9
  • 7.10
  • 7.11
  • 7.12
  • 7.13
  • 7.14
  • 7.15
  • 7.16
  • 7.17
  • 7.18
  • 7.19
  • 7.20
  • 7.21
  • 7.22
  • 7.23
  • 7.24
  • 7.25
  • 7.26
  • 7.27
  • 7.28
  • 7.29
  • 7.30
  • 7.31
  • 7.32
  • 7.33
  • 7.34
  • 7.35
  • 7.36
  • 7.37
  • 7.38
  • 7.39
  • 7.40
  • 7.41
  • 7.42
  • 7.43
  • 7.44
  • 7.45
  • 7.46
  • 7.47
  • 7.48
  • 7.49
  • 7.50
  • 7.51
  • 8 Infinite and semi-infinite (octant) continua. p(x, y, z, t) is a function of x, y, z and t only
  • 8.1
  • 8.2
  • 8.3
  • 8.4
  • 8.5
  • 8.6
  • 8.7
  • 8.8
  • 8.9
  • 8.10
  • 8.11
  • 9 Quadrant layer: infinite and semi-infinite continua. p(x, y, z, t) is a function of x, y, z and t only
  • 9.1
  • 9.2
  • 9.3
  • 9.4
  • 9.5
  • 9.6
  • 9.7
  • 9.8
  • 9.9
  • 9.10
  • 9.11
  • 9.12
  • 9.13
  • 9.14
  • 9.15
  • 10 Octant layer. Infinite and semi-infinite continua. p(x, y, z, t) is a function of x, y, z and t only
  • 10.1
  • 10.2
  • 10.3
  • 10.4
  • 10.5
  • 10.6
  • 10.7
  • 10.8
  • 10.9
  • 10.10
  • 10.11
  • 10.12
  • 10.13
  • 10.14
  • 10.15
  • 10.16
  • 10.17
  • 10.18
  • 10.19
  • 11 Cuboid. p(x, y, z, t) is a function of x, y, z and t only
  • 11.1
  • 11.2
  • 11.3
  • 11.4
  • 11.5
  • 11.6
  • 11.7
  • 11.8
  • 11.9
  • 11.10
  • 12 Infinite and semi-infinite cylindrical continua. p(r, t) is a function of r and t only
  • 12.1
  • 12.2
  • 12.3
  • 12.4
  • 13 Bounded cylindrical continua. p(r, t) is a function of r and t only
  • 13.1
  • 13.2
  • 13.3
  • 13.4
  • 13.5
  • 13.6
  • 13.7
  • 13.8
  • 13.9
  • 13.10
  • 13.11
  • 13.12
  • 13.13
  • 13.14
  • 13.15
  • 13.16
  • 13.17
  • 13.18
  • 13.19
  • 14 Infinite and semi-infinite cylindrical continua. p(r, θ, t) is cyclic around the cylinder with a period 2π. p(r, θ, t) is a function of r, θ and t
  • 14.1
  • 14.2
  • 14.3
  • 14.4
  • 15 Bounded cylindrical continuum. p(r, θ, t) is cyclic around the cylinder with a period 2π. p(r, θ, t) is a function of r, θ and t
  • 15.1
  • 15.2
  • 15.3
  • 15.4
  • 15.5
  • 15.6
  • 15.7
  • 15.8
  • 15.9
  • 15.10
  • 15.11
  • 15.12
  • 15.13
  • 16 Wedge-shaped infinite and semi-infinite continua. The range of the &#952; variable is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. p(r, &#952;, t) and the intial and boundary conditions are functions of r, &#952; and t
  • 16.1
  • 16.2
  • 16.3
  • 16.4
  • 16.5
  • 16.6
  • 16.7
  • 16.8
  • 16.9
  • 16.10
  • 16.11
  • 16.12
  • 16.13
  • 16.14
  • 16.15
  • 16.16
  • 16.17
  • 16.18
  • 16.19
  • 16.20
  • 16.21
  • 16.22
  • 16.23
  • 16.24
  • 16.25
  • 16.26
  • 16.27
  • 16.28
  • 16.29
  • 16.30
  • 16.31
  • 16.32
  • 16.33
  • 16.34
  • 16.35
  • 16.36
  • 17 Wedge-shaped bounded continuum. The range of &#952; is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. p(r, &#952;, t) is a function of r, &#952; and t
  • 17.1
  • 17.2
  • 17.3
  • 17.4
  • 17.5
  • 17.6
  • 17.7
  • 17.8
  • 17.9
  • 17.10
  • 17.11
  • 17.12
  • 17.13
  • 17.14
  • 17.15
  • 17.16
  • 17.17
  • 17.18
  • 17.19
  • 17.20
  • 17.21
  • 17.22
  • 17.23
  • 17.24
  • 17.25
  • 17.26
  • 17.27
  • 17.28
  • 17.29
  • 17.30
  • 17.31
  • 17.32
  • 17.33
  • 17.34
  • 17.35
  • 17.36
  • 17.37
  • 17.38
  • 17.39
  • 17.40
  • 17.41
  • 17.42
  • 17.43
  • 17.44
  • 17.45
  • 17.46
  • 17.47
  • 17.48
  • 17.49
  • 17.50
  • 17.51
  • 17.52
  • 17.53
  • 17.54
  • 17.55
  • 17.56
  • 17.57
  • 17.58
  • 17.59
  • 17.60
  • 17.61
  • 17.62
  • 17.63
  • 17.64
  • 17.65
  • 17.66
  • 17.67
  • 17.68
  • 17.69
  • 17.70
  • 17.71
  • 17.72
  • 17.73
  • 17.74
  • 17.75
  • 17.76
  • 17.77
  • 17.78
  • 17.79
  • 17.80
  • 17.81
  • 17.82
  • 17.83
  • 17.84
  • 17.85
  • 17.86
  • 17.87
  • 17.88
  • 17.89
  • 17.90
  • 17.91
  • 17.92
  • 17.93
  • 17.94
  • 17.95
  • 17.96
  • 17.97
  • 17.98
  • 17.99
  • 17.100
  • 17.101
  • 17.102
  • 17.103
  • 17.104
  • 17.105
  • 17.106
  • 17.107
  • 17.108
  • 18 Infinite and semi-infinite cylindrical continua. The continuum is also either infinite or semi-infinite in z. p(r, z, t) is a function of r, z and t
  • 18.1
  • 18.2
  • 18.3
  • 18.4
  • 18.5
  • 18.6
  • 18.7
  • 18.8
  • 18.9
  • 18.10
  • 18.11
  • 18.12
  • 18.13
  • 18.14
  • 18.15
  • 18.16
  • 19 Infinite and semi-infinite cylindrical continua bounded by the planes z = 0 and z = d. p(r, z, t) is a function of r, z and t
  • 19.1
  • 19.2
  • 19.3
  • 19.4
  • 19.5
  • 19.6
  • 19.7
  • 19.8
  • 19.9
  • 19.10
  • 19.11
  • 19.12
  • 19.13
  • 19.14
  • 19.15
  • 19.16
  • 19.17
  • 19.18
  • 19.19
  • 19.20
  • 19.21
  • 19.22
  • 19.23
  • 19.24
  • 19.25
  • 19.26
  • 19.27
  • 19.28
  • 19.29
  • 19.30
  • 19.31
  • 19.32
  • 19.33
  • 19.34
  • 19.35
  • 19.36
  • 20 Bounded cylindrical continuum. The independent variable z is either infinite or semi-infinite. p(r, z, t) is a function of r, z and t
  • 20.1
  • 20.2
  • 20.3
  • 20.4
  • 20.5
  • 20.6
  • 20.7
  • 20.8
  • 20.9
  • 20.10
  • 20.11
  • 20.12
  • 20.13
  • 20.14
  • 20.15
  • 20.16
  • 20.17
  • 20.18
  • 20.19
  • 20.20
  • 20.21
  • 20.22
  • 20.23
  • 20.24
  • 20.25
  • 20.26
  • 20.27
  • 20.28
  • 20.29
  • 20.30
  • 20.31
  • 20.32
  • 20.33
  • 20.34
  • 20.35
  • 20.36
  • 20.37
  • 20.38
  • 20.39
  • 20.40
  • 20.41
  • 20.42
  • 20.43
  • 20.44
  • 20.45
  • 20.46
  • 20.47
  • 20.48
  • 21 Bounded cylindrical continuum. The continuum is also bounded by the planes z = 0 and z = d. p(r, z, t) is a function of r, z and t
  • 21.1
  • 21.2
  • 21.3
  • 21.4
  • 21.5
  • 21.6
  • 21.7
  • 21.8
  • 21.9
  • 21.10
  • 21.11
  • 21.12
  • 21.13
  • 21.14
  • 21.15
  • 21.16
  • 21.17
  • 21.18
  • 21.19
  • 21.20
  • 21.21
  • 21.22
  • 21.23
  • 21.24
  • 21.25
  • 21.26
  • 21.27
  • 21.28
  • 21.29
  • 21.30
  • 21.31
  • 21.32
  • 21.33
  • 21.34
  • 21.35
  • 21.36
  • 21.37
  • 21.38
  • 21.39
  • 21.40
  • 21.41
  • 21.42
  • 21.43
  • 21.44
  • 21.45
  • 21.46
  • 21.47
  • 21.48
  • 21.49
  • 21.50
  • 21.51
  • 21.52
  • 21.53
  • 21.54
  • 21.55
  • 21.56
  • 21.57
  • 21.58
  • 21.59
  • 21.60
  • 21.61
  • 21.62
  • 21.63
  • 21.64
  • 21.65
  • 21.66
  • 21.67
  • 21.68
  • 21.69
  • 21.70
  • 21.71
  • 21.72
  • 21.73
  • 21.74
  • 21.75
  • 21.76
  • 21.77
  • 21.78
  • 21.79
  • 21.80
  • 21.81
  • 21.82
  • 21.83
  • 21.84
  • 21.85
  • 21.86
  • 21.87
  • 21.88
  • 21.89
  • 21.90
  • 21.91
  • 21.92
  • 21.93
  • 21.94
  • 21.95
  • 21.96
  • 21.97
  • 21.98
  • 21.99
  • 21.100
  • 21.101
  • 21.102
  • 21.103
  • 21.104
  • 21.105
  • 21.106
  • 21.107
  • 21.108
  • 22 Infinite and semi-infinite cylindrical continua. p (r, &#952;, z, t) is cyclic around the cylinder with a period 2&#960;. p (r, &#952;, z, t) is a function of r, &#952;, z and t
  • 22.1
  • 22.2
  • 22.3
  • 22.4
  • 22.5
  • 22.6
  • 22.7
  • 22.8
  • 22.9
  • 22.10
  • 22.11
  • 22.12
  • 22.13
  • 22.14
  • 22.15
  • 22.16
  • 23 Infinite and semi-infinite cylindrical continua bounded by the planes z = 0 and z = d. p (r, &#952;, z, t) is cyclic around the cylinder with a period 2&#960;. p (r, &#952;, z, t) is a function of r, &#952;, z and t
  • 23.1
  • 23.2
  • 23.3
  • 23.4
  • 23.5
  • 23.6
  • 23.7
  • 23.8
  • 23.9
  • 23.10
  • 23.11
  • 23.12
  • 23.13
  • 23.14
  • 23.15
  • 23.16
  • 23.17
  • 23.18
  • 23.19
  • 23.20
  • 23.21
  • 23.22
  • 23.23
  • 23.24
  • 23.25
  • 23.26
  • 23.27
  • 23.28
  • 23.29
  • 23.30
  • 23.31
  • 23.32
  • 23.33
  • 23.34
  • 23.35
  • 23.36
  • 24 Bounded cylindrical continuum. The independent variable z is either infinite or semi-infinite. p(r, &#952;, z, t) is cyclic around the cylinder with a period 2&#960;. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 24.1
  • 24.2
  • 24.3
  • 24.4
  • 24.5
  • 24.6
  • 24.7
  • 24.8
  • 24.9
  • 24.10
  • 24.11
  • 24.12
  • 24.13
  • 24.14
  • 24.15
  • 24.16
  • 24.17
  • 24.18
  • 24.19
  • 24.20
  • 24.21
  • 24.22
  • 24.23
  • 24.24
  • 24.25
  • 24.26
  • 24.27
  • 24.28
  • 24.29
  • 24.30
  • 24.31
  • 24.32
  • 24.33
  • 24.34
  • 24.35
  • 24.36
  • 24.37
  • 24.38
  • 24.39
  • 24.40
  • 24.41
  • 24.42
  • 24.43
  • 24.44
  • 24.45
  • 24.46
  • 24.47
  • 24.48
  • 25 The continuum is also bounded by the planes z = 0 and z = d. p(r, &#952;, z, t) is cyclic around the cylinder with a period 2&#960;. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 25.1
  • 25.2
  • 25.3
  • 25.4
  • 25.5
  • 25.6
  • 25.7
  • 25.8
  • 25.9
  • 25.10
  • 25.11
  • 25.12
  • 25.13
  • 25.14
  • 25.15
  • 25.16
  • 25.17
  • 25.18
  • 25.19
  • 25.20
  • 25.21
  • 25.22
  • 25.23
  • 25.24
  • 25.25
  • 25.26
  • 25.27
  • 25.28
  • 25.29
  • 25.30
  • 25.31
  • 25.32
  • 25.33
  • 25.34
  • 25.35
  • 25.36
  • 25.37
  • 25.38
  • 25.39
  • 25.40
  • 25.41
  • 25.42
  • 25.43
  • 25.44
  • 25.45
  • 25.46
  • 25.47
  • 25.48
  • 25.49
  • 25.50
  • 25.51
  • 25.52
  • 25.53
  • 25.54
  • 25.55
  • 25.56
  • 25.57
  • 25.58
  • 25.59
  • 25.60
  • 25.61
  • 25.62
  • 25.63
  • 25.64
  • 25.65
  • 25.66
  • 25.67
  • 25.68
  • 25.69
  • 25.70
  • 25.71
  • 25.72
  • 25.73
  • 25.74
  • 25.75
  • 25.76
  • 25.77
  • 25.78
  • 25.79
  • 25.80
  • 25.81
  • 25.82
  • 25.83
  • 25.84
  • 25.85
  • 25.86
  • 25.87
  • 25.88
  • 25.89
  • 25.90
  • 25.91
  • 25.92
  • 25.93
  • 25.94
  • 25.95
  • 25.96
  • 25.97
  • 25.98
  • 25.99
  • 25.100
  • 25.101
  • 25.102
  • 25.103
  • 25.104
  • 25.105
  • 25.106
  • 25.107
  • 25.108
  • 26 Wedge-shaped infinite and semi-infinite continua. The range of the variable &#952; is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 26.1
  • 26.2
  • 26.3
  • 26.4
  • 26.5
  • 26.6
  • 26.7
  • 26.8
  • 26.9
  • 26.10
  • 26.11
  • 26.12
  • 26.13
  • 26.14
  • 26.15
  • 26.16
  • 26.17
  • 26.18
  • 26.19
  • 26.20
  • 26.21
  • 26.22
  • 26.23
  • 26.24
  • 27 Wedge-shaped infinite and semi-infinite continua bounded by the planes z = 0 and z = d. The range of the variable &#952; is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 27.1
  • 27.2
  • 27.3
  • 27.4
  • 27.5
  • 27.6
  • 27.7
  • 27.8
  • 27.9
  • 27.10
  • 27.11
  • 27.12
  • 27.13
  • 27.14
  • 27.15
  • 27.16
  • 27.17
  • 27.18
  • 27.19
  • 27.20
  • 27.21
  • 27.22
  • 27.23
  • 27.24
  • 27.25
  • 27.26
  • 27.27
  • 27.28
  • 27.29
  • 27.30
  • 27.31
  • 27.32
  • 27.33
  • 27.34
  • 27.35
  • 27.36
  • 27.37
  • 27.38
  • 27.39
  • 27.40
  • 27.41
  • 27.42
  • 27.43
  • 27.44
  • 28 Wedge-shaped bounded continuum. The independent variable z is either infinite or semi-infinite. The range of the variable &#952; is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 28.1
  • 28.2
  • 28.3
  • 28.4
  • 28.5
  • 28.6
  • 28.7
  • 28.8
  • 28.9
  • 28.10
  • 28.11
  • 28.12
  • 28.13
  • 28.14
  • 28.15
  • 28.16
  • 28.17
  • 28.18
  • 28.19
  • 28.20
  • 28.21
  • 28.22
  • 28.23
  • 28.24
  • 28.25
  • 28.26
  • 28.27
  • 28.28
  • 28.29
  • 28.30
  • 28.31
  • 28.32
  • 28.33
  • 28.34
  • 28.35
  • 28.36
  • 28.37
  • 28.38
  • 28.39
  • 28.40
  • 28.41
  • 28.42
  • 28.43
  • 28.44
  • 28.45
  • 28.46
  • 28.47
  • 28.48
  • 28.49
  • 28.50
  • 28.51
  • 28.52
  • 28.53
  • 28.54
  • 28.55
  • 28.56
  • 29 Wedge. The range of the variable &#952; is a portion of the circle; that is, 0 &#8804; &#952; &#8804; &#965;, where &#965; < 2&#960;. The independent variable z is bounded by the planes z=0 and z=d. p(r, &#952;, z, t) is a function of r, &#952;, z and t
  • 29.1
  • 29.2
  • 29.3
  • 29.4
  • 29.5
  • 29.6
  • 29.7
  • 29.8
  • 29.9
  • 29.10
  • 29.11
  • 29.12
  • 29.13
  • 29.14
  • 29.15
  • 29.16
  • 29.17
  • 29.18
  • 29.19
  • 29.20
  • 29.21
  • 29.22
  • 29.23
  • 29.24
  • 29.25
  • 29.26
  • 29.27
  • 29.28
  • 29.29
  • 29.30
  • 29.31
  • 29.32
  • 29.33
  • 29.34
  • 29.35
  • 29.36
  • 29.37
  • 29.38
  • 29.39
  • 29.40
  • 29.41
  • 29.42
  • 29.43
  • 29.44
  • 29.45
  • 29.46
  • 29.47
  • 29.48
  • 29.49
  • 29.50
  • 29.51
  • 29.52
  • 29.53
  • 29.54
  • 29.55
  • 29.56
  • 29.57
  • 29.58
  • 29.59
  • 29.60
  • 29.61
  • 29.62
  • 29.63
  • 29.64
  • 29.65
  • 29.66
  • 29.67
  • 29.68
  • 29.69
  • 29.70
  • 29.71
  • 29.72
  • 29.73
  • 29.74
  • 29.75
  • 29.76
  • 29.77
  • 29.78
  • 29.79
  • 29.80
  • 29.81
  • 29.82
  • 29.83
  • 29.84
  • 29.85
  • 29.86
  • 29.87
  • 29.88
  • 29.89
  • 29.90
  • 29.91
  • 29.92
  • 29.93
  • 29.94
  • 29.95
  • 29.96
  • 29.97
  • 29.98
  • 29.99
  • 29.100
  • 29.101
  • 29.102
  • 29.103
  • 29.104
  • 29.105
  • 29.106
  • 29.107
  • 29.108
  • 29.109
  • 29.110
  • 29.111
  • 29.112
  • 29.113
  • 29.114
  • 29.115
  • 29.116
  • Appendix A: A supplement to Chapter 8
  • Appendix B: A supplement to Chapter 9
  • Appendix C: A supplement to Chapter 10
  • Appendix D: A supplement to Chapter 11
  • Appendix E: A table of integrals
  • Appendix F: General properties and a table of Laplace transforms
  • Appendix G: Series
  • Bibliography
  • Author Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • W
  • Subject Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W