CITATION

Dugan, Roger C.; McGranaghan, Mark F.; Santoso, Surya; and Beaty, H. Wayne. Electrical Power Systems Quality, Third Edition. US: McGraw-Hill Professional, 2012.

Electrical Power Systems Quality, Third Edition

Published:  January 2012

eISBN: 9780071761567 007176156X | ISBN: 9780071761550
  • Contents
  • Foreword
  • Acknowledgments
  • 1 Introduction
  • 1.1 What Is Power Quality?
  • 1.2 Power Quality = Voltage Quality
  • 1.3 Why Are We Concerned about Power Quality?
  • 1.4 The Power Quality Evaluation Procedure
  • 1.5 Who Should Use This Book
  • 1.6 Overview of the Contents
  • 2 Terms and Definitions
  • 2.1 Need for a Consistent Vocabulary
  • 2.2 General Classes of Power Quality Problems
  • 2.3 Transients
  • 2.3.1 Impulsive Transient
  • 2.3.2 Oscillatory Transient
  • 2.4 Long-Duration Voltage Variations
  • 2.4.1 Overvoltage
  • 2.4.2 Undervoltage
  • 2.4.3 Sustained Interruptions
  • 2.5 Short-Duration Voltage Variations
  • 2.5.1 Interruption
  • 2.5.2 Sags (Dips)
  • 2.5.3 Swells
  • 2.6 Voltage Imbalance
  • 2.7 Waveform Distortion
  • 2.8 Voltage Fluctuation
  • 2.9 Power Frequency Variations
  • 2.10 Power Quality Terms
  • 2.11 Ambiguous Terms
  • 2.12 CBEMA and ITI Curves
  • 2.13 References
  • 3 Voltage Sags and Interruptions
  • 3.1 Utility Distribution System Designs
  • 3.1.1 Four-Wire Multi-Grounded Neutral Systems
  • 3.1.2 Three-Wire Delta Systems
  • 3.1.3 European-Style Distribution Systems
  • 3.1.4 Radial Distribution Configuration/Structure
  • 3.2 Sources of Sags and Interruptions
  • 3.3 Estimating Voltage Sag Performance
  • 3.3.1 Area of Vulnerability
  • 3.3.2 Equipment Sensitivity to Voltage Sags
  • 3.3.3 Transmission System Sag Performance Evaluation
  • 3.3.4 Utility Distribution System Sag Performance Evaluation
  • 3.4 Fundamental Principles of Protection
  • 3.5 Solutions at the End-User Level
  • 3.5.1 Ferroresonant Transformers
  • 3.5.2 Magnetic Synthesizers
  • 3.5.3 Active Series Compensators
  • 3.5.4 On-Line UPS
  • 3.5.5 Standby UPS
  • 3.5.6 Hybrid UPS
  • 3.5.7 Motor-Generator Sets
  • 3.5.8 Flywheel Energy Storage Systems
  • 3.5.9 Superconducting Magnetic Energy Storage (SMES) Devices
  • 3.5.10 Static Transfer Switches and Fast Transfer Switches
  • 3.6 Evaluating the Economics of Different Ride-Through Alternatives
  • 3.6.1 Estimating the Costs for the Voltage Sag Events
  • 3.6.2 Characterizing the Cost and Effectiveness for Solution Alternatives
  • 3.6.3 Performing Comparative Economic Analysis
  • 3.7 Motor-Starting Sags
  • 3.7.1 Motor-Starting Methods
  • 3.7.2 Estimating the Sag Severity during Full-Voltage Starting
  • 3.8 Utility System Fault-Clearing Issues
  • 3.8.1 Overcurrent Coordination Principles
  • 3.8.2 Fuses
  • 3.8.3 Reclosing
  • 3.8.4 Fuse Saving
  • 3.8.5 Reclosers with Pulse-Closing Technology
  • 3.8.6 Reliability
  • 3.8.7 Impact of Eliminating Fuse Saving
  • 3.8.8 Increased Sectionalizing
  • 3.8.9 Midline or Tap Reclosers
  • 3.8.10 Instantaneous Reclosing
  • 3.8.11 Single-Phase Tripping
  • 3.8.12 Current-Limiting Fuses
  • 3.8.13 Adaptive Relaying
  • 3.8.14 Ignoring Third-Harmonic Currents
  • 3.8.15 Utility Fault Prevention
  • 3.8.16 Fault Locating
  • 3.9 Fault Locating Using Voltage and Current Measurements
  • 3.9.1 Impedance-Based Fault Location Methods
  • 3.9.2 Locating Incipient Faults
  • 3.9.3 Fault Current Profile
  • 3.10 References
  • 4 Transient Overvoltages
  • 4.1 Sources of Transient Overvoltages
  • 4.1.1 Capacitor Switching
  • 4.1.2 Magnification of Capacitor-Switching Transients
  • 4.1.3 Restrikes During Capacitor Deenergizing
  • 4.1.4 Lightning
  • 4.1.5 Ferroresonance
  • 4.1.6 Other Switching Transients
  • 4.2 Principles of Overvoltage Protection
  • 4.3 Devices for Overvoltage Protection
  • 4.3.1 Surge Arresters and Transient Voltage Surge Suppressors
  • 4.3.2 Isolation Transformers
  • 4.3.3 Low-Pass Filters
  • 4.3.4 Low-Impedance Power Conditioners
  • 4.3.5 Utility Surge Arresters
  • 4.4 Utility Capacitor-Switching Transients
  • 4.4.1 Switching Times
  • 4.4.2 Preinsertion Resistors
  • 4.4.3 Synchronous Closing
  • 4.4.4 Capacitor Location
  • 4.5 Utility System Lightning Protection
  • 4.5.1 Shielding
  • 4.5.2 Line Arresters
  • 4.5.3 Low-Side Surges
  • 4.5.4 Cable Protection
  • 4.5.5 Scout Arrester Scheme
  • 4.6 Managing Ferroresonance
  • 4.7 Switching Transient Problems with Loads
  • 4.7.1 Nuisance Tripping of Adjustable-Speed Drives (ASDs)
  • 4.7.2 Transients from Load Switching
  • 4.7.3 Transformer Energizing
  • 4.8 Computer Tools for Transients Analysis
  • 4.9 References
  • 5 Fundamentals of Harmonics
  • 5.1 Harmonic Distortion
  • 5.2 Voltage versus Current Distortion
  • 5.3 Harmonics versus Transients
  • 5.4 Power System Quantities under Nonsinusoidal Conditions
  • 5.4.1 Active, Reactive, and Apparent Power
  • 5.4.2 Power Factor: Displacement and True
  • 5.4.3 Harmonic Phase Sequences
  • 5.4.4 Triplen Harmonics
  • 5.5 Harmonic Indices
  • 5.5.1 Total Harmonic Distortion
  • 5.5.2 Total Demand Distortion
  • 5.6 Harmonic Sources from Commercial Loads
  • 5.6.1 Single-Phase Power Supplies
  • 5.6.2 Fluorescent Lighting
  • 5.6.3 Adjustable-Speed Drives for HVAC and Elevators
  • 5.7 Harmonic Sources from Industrial Loads
  • 5.7.1 Three-Phase Power Converters
  • 5.7.2 Arcing Devices
  • 5.7.3 Saturable Devices
  • 5.8 Locating Harmonic Sources
  • 5.9 System Response Characteristics
  • 5.9.1 System Impedance
  • 5.9.2 Capacitor Impedance
  • 5.9.3 Parallel Resonance
  • 5.9.4 Series Resonance
  • 5.9.5 Effects of Resistance and Resistive Load
  • 5.10 Effects of Harmonic Distortion
  • 5.10.1 Impact on Capacitors
  • 5.10.2 Impact on Transformers
  • 5.10.3 Impact on Motors
  • 5.10.4 Impact on Telecommunications
  • 5.10.5 Impact on Energy and Demand Metering
  • 5.11 Interharmonics
  • 5.12 References
  • 5.13 Bibliography
  • 6 Applied Harmonics
  • 6.1 Harmonic Distortion Evaluations
  • 6.1.1 Concept of Point of Common Coupling
  • 6.1.2 Harmonic Evaluations on the Utility System
  • 6.1.3 Harmonic Evaluation for End-User Facilities
  • 6.2 Principles for Controlling Harmonics
  • 6.2.1 Reducing Harmonic Currents in Loads
  • 6.2.2 Filtering
  • 6.2.3 Modifying the System Frequency Response
  • 6.3 Where to Control Harmonics
  • 6.3.1 On Utility Distribution Feeders
  • 6.3.2 In End-User Facilities
  • 6.4 Harmonic Studies
  • 6.4.1 Harmonic Study Procedure
  • 6.4.2 Developing a System Model
  • 6.4.3 Modeling Harmonic Sources
  • 6.4.4 Computer Tools for Harmonics Analysis
  • 6.4.5 Harmonic Analysis by Computer—Historical Perspective
  • 6.5 Devices for Controlling Harmonic Distortion
  • 6.5.1 In-Line Reactors or Chokes
  • 6.5.2 Zigzag Transformers
  • 6.5.3 Passive Filters
  • 6.5.4 Active Filters
  • 6.6 Harmonic Filter Design: A Case Study
  • 6.7 Case Studies
  • 6.7.1 Evaluation of Neutral Loading and Transformer Derating
  • 6.7.2 Interharmonics Caused by Induction Furnaces
  • 6.8 Standards on Harmonics
  • 6.8.1 IEEE Standard 519-1992
  • 6.8.2 Overview of IEC Standards on Harmonics
  • 6.8.3 IEC 61000-2-2
  • 6.8.4 IEC 61000-3-2 and IEC 61000-3-4
  • 6.8.5 IEC 61000-3-6
  • 6.8.6 NRS 048-02
  • 6.8.7 EN 50160
  • 6.9 References
  • 6.10 Bibliography
  • 7 Long-Duration Voltage Variations
  • 7.1 Principles of Regulating the Voltage
  • 7.2 Devices for Voltage Regulation
  • 7.2.1 Utility Step-Voltage Regulators
  • 7.2.2 Ferroresonant Transformers
  • 7.2.3 Electronic Tap-Switching Regulators
  • 7.2.4 Magnetic Synthesizers
  • 7.2.5 On-Line UPS Systems
  • 7.2.6 Motor-Generator Sets
  • 7.2.7 Static Var Compensators
  • 7.3 Utility Voltage Regulator Application
  • 7.3.1 Line Drop Compensator
  • 7.3.2 Regulators in Series
  • 7.4 Capacitors for Voltage Regulation
  • 7.4.1 Shunt Capacitors
  • 7.4.2 Series Capacitors
  • 7.5 End-User Capacitor Application
  • 7.5.1 Location for Power Factor Correction Capacitors
  • 7.5.2 Voltage Rise
  • 7.5.3 Reduction in Power System Losses
  • 7.5.4 Reduction in Line Current
  • 7.5.5 Displacement Power Factor versus True Power Factor
  • 7.5.6 Selecting the Amount of Capacitance
  • 7.6 Regulating Utility Voltage with Distributed Resources
  • 7.7 Flicker
  • 7.7.1 Sources of Flicker
  • 7.7.2 Mitigation Techniques
  • 7.7.3 Quantifying Flicker
  • 7.8 References
  • 7.9 Bibliography
  • 8 Power Quality Benchmarking
  • 8.1 Introduction
  • 8.2 Benchmarking Process
  • 8.3 RMS Voltage Variation Indices
  • 8.3.1 Characterizing RMS Variation Events
  • 8.3.2 RMS Variation Performance Indices
  • 8.3.3 SARFI for the EPRI DPQ Project
  • 8.3.4 Example Index Computation Procedure
  • 8.3.5 Utility Applications
  • 8.4 Harmonics Indices
  • 8.4.1 Sampling Techniques
  • 8.4.2 Characterization of Three-Phase Harmonic Voltage Measurements
  • 8.4.3 Definition of Harmonic Indices
  • 8.4.4 Harmonic Benchmark Data
  • 8.4.5 Seasonal Effects
  • 8.5 Power Quality Contracts
  • 8.5.1 RMS Variations Agreements
  • 8.5.2 Harmonics Agreements
  • 8.5.3 Example Contract
  • 8.6 Power Quality Insurance
  • 8.6.1 Overview of Power Quality Insurance Concept
  • 8.6.2 Designing an Insurance Policy
  • 8.6.3 Adjusting for PQ Investment Costs
  • 8.7 Power Quality State Estimation
  • 8.7.1 General Approach
  • 8.7.2 Number of Monitors
  • 8.7.3 Estimating RMS Variations
  • 8.7.4 Simulation Engine Requirements
  • 8.8 Including Power Quality in Distribution Planning
  • 8.8.1 Planning Process
  • 8.8.2 Risk versus Expected Value
  • 8.8.3 System Simulation Tools
  • 8.8.4 Fault Incidence Rates
  • 8.8.5 Overcurrent Device Response
  • 8.8.6 Customer Damage Costs
  • 8.9 References
  • 8.10 Bibliography Distributed Generation and Power Quality
  • 9 Distributed Generation and Power Quality
  • 9.1 Resurgence of DG
  • 9.1.1 Perspectives on DG Benefits
  • 9.1.2 Perspectives on Interconnection
  • 9.2 DG Technologies
  • 9.2.1 Reciprocating Engine Genset
  • 9.2.2 Combustion (Gas) Turbines
  • 9.2.3 Fuel Cells
  • 9.2.4 Wind Turbines
  • 9.2.5 Photovoltaic Systems
  • 9.3 Interface to the Utility System
  • 9.3.1 Synchronous Machines
  • 9.3.2 Asynchronous (Induction) Machines
  • 9.3.3 Electronic Power Inverters
  • 9.4 Power Quality Issues
  • 9.4.1 Sustained Interruptions
  • 9.4.2 Voltage Regulation
  • 9.4.3 Harmonics
  • 9.4.4 Voltage Sags
  • 9.5 Operating Conflicts
  • 9.5.1 Utility Fault-Clearing Requirements
  • 9.5.2 Reclosing
  • 9.5.3 Interference with Relaying
  • 9.5.4 Voltage Regulation Issues
  • 9.5.5 Harmonics
  • 9.5.6 Islanding
  • 9.5.7 Ferroresonance
  • 9.5.8 Shunt Capacitor Interaction
  • 9.5.9 Transformer Connections
  • 9.6 DG on Low-Voltage Distribution Networks
  • 9.6.1 Fundamentals of Network Operation
  • 9.6.2 Summary of Network Interconnection Issues
  • 9.6.3 Integration Techniques for DG on Networks
  • 9.7 Siting DG
  • 9.8 Interconnection Standards
  • 9.8.1 Industry Standards Efforts
  • 9.8.2 Interconnection Requirements
  • 9.8.3 A Simple Interconnection
  • 9.8.4 A Complex Interconnection
  • 9.9 Summary
  • 9.10 References
  • 9.11 Bibliography
  • 10 Wiring and Grounding
  • 10.1 Resources
  • 10.2 Definitions
  • 10.3 Reasons for Grounding
  • 10.4 Typical Wiring and Grounding Problems
  • 10.4.1 Problems with Conductors and Connectors
  • 10.4.2 Missing Safety Ground
  • 10.4.3 Multiple Neutral-to-Ground Connections
  • 10.4.4 Ungrounded Equipment
  • 10.4.5 Additional Ground Rods
  • 10.4.6 Ground Loops
  • 10.4.7 Insufficient Neutral Conductor
  • 10.5 Solutions to Wiring and Grounding Problems
  • 10.5.1 Proper Grounding Practices
  • 10.5.2 Ground Electrode (rod)
  • 10.5.3 Service Entrance Connections
  • 10.5.4 Panel Board
  • 10.5.5 Isolated Ground
  • 10.5.6 Separately Derived Systems
  • 10.5.7 Grounding Techniques for Signal Reference
  • 10.5.8 More on Grounding for Sensitive Equipment
  • 10.5.9 Summary of Wiring and Grounding Solutions
  • 10.6 Bibliography
  • 11 Power Quality Monitoring
  • 11.1 Monitoring Considerations
  • 11.1.1 Monitoring as Part of a Facility Site Survey
  • 11.1.2 Determining What to Monitor
  • 11.1.3 Choosing Monitoring Locations
  • 11.1.4 Options for Permanent Power Quality Monitoring Equipment
  • 11.1.5 Disturbance Monitor Connections
  • 11.1.6 Setting Monitor Thresholds
  • 11.1.7 Quantities and Duration to Measure
  • 11.1.8 Finding the Source of a Disturbance
  • 11.2 Historical Perspective of Power Quality Measuring Instruments
  • 11.3 Power Quality Measurement Equipment
  • 11.3.1 Types of Instruments
  • 11.3.2 Wiring and Grounding Testers
  • 11.3.3 Multimeters
  • 11.3.4 Digital Cameras
  • 11.3.5 Oscilloscopes
  • 11.3.6 Disturbance Analyzers
  • 11.3.7 Spectrum Analyzers and Harmonic Analyzers
  • 11.3.8 Combination Disturbance and Harmonic Analyzers
  • 11.3.9 Flicker Meters
  • 11.3.10 Smart Power Quality Monitors
  • 11.3.11 Transducer Requirements
  • 11.4 Assessment of Power Quality Measurement Data
  • 11.4.1 Off-Line Power Quality Data Assessment
  • 11.4.2 On-Line Power Quality Data Assessment
  • 11.5 Application of Intelligent Systems
  • 11.5.1 Basic Design of an Expert System for Monitoring Applications
  • 11.5.2 Example Applications of Expert Systems
  • 11.5.3 Future Applications
  • 11.5.4 Power Quality Monitoring and the Internet
  • 11.5.5 Summary and Future Direction
  • 11.6 Power Quality Monitoring Standards
  • 11.6.1 IEEE 1159: Guide for Power Quality Monitoring
  • 11.6.2 IEC 61000–4–30: Testing and Measurement Techniques—Power Quality Measurement Methods
  • 11.7 References
  • 11.8 Bibliography
  • Index