CITATION

Rossmiller, Ronald. Stormwater Design for Sustainable Development. US: McGraw-Hill Professional, 2013.

Stormwater Design for Sustainable Development

Published:  October 2013

eISBN: 9780071816557 0071816550 | ISBN: 9780071816526
  • Cover
  • About the Author
  • Title Page
  • Copyrigth Page
  • Contents
  • Preface
  • Abbreviations
  • 1 Introduction
  • 1.1 Why This Book
  • 1.1.1 Where We Were and Are Now
  • 1.1.2 For Whom Was This Book Written?
  • 1.1.3 Purposes of This Book
  • 1.1.4 Sustainability and the Triple Bottom Line
  • 1.2 The Book’s Contents
  • 1.3 A Better Way to Develop Land
  • 1.4 Intent of This Book
  • 1.5 Spreadsheets
  • 1.6 Organization of the Book
  • 1.7 Some Final Thoughts
  • 2 Developing Low-Impact Developments
  • 2.1 Low-Impact Development
  • 2.2 America Is Becoming Green
  • 2.3 Maximize Development’s Attractiveness
  • 2.4 Minimize Runoff Rates and Volumes
  • 2.5 Maximize Reduction of Pollutants
  • 2.6 Minimize Construction, Operation, and Maintenance Costs
  • 2.7 Educational Opportunities
  • 2.8 Realistic Approach
  • 2.8.1 Evolution of a Development
  • 2.8.2 Some Suggestions
  • 2.9 Balanced-Layered Approach to Sustainability
  • 2.9.1 Local Streets
  • 2.9.2 Sidewalks
  • 2.9.3 Lot Sizes
  • 2.9.4 Front-Yard Setbacks (Coving)
  • 2.9.5 Side-Yard Setbacks
  • 2.9.6 Driveways
  • 2.9.7 Gathering Places: Open Space
  • 2.9.8 Architecture
  • 2.9.9 Rain Gardens
  • 2.9.10 Lawns, Shrubs, and Trees
  • 2.9.11 Other BMPs
  • 2.10 Summary
  • 3 Coving and Curvilinear Streets
  • 3.1 Introduction
  • 3.2 A Better Approach
  • 3.3 Coving (Front-Yard Setbacks)
  • 3.4 Benefits of Coving and Curvilinear Streets
  • 3.5 Traditional Subdivision
  • 3.6 Newer Neighborhood Approach
  • 3.7 Newer Neighborhood Concept Applications
  • 3.8 Altoona Heights
  • 3.8.1 Traditional Grid Streets
  • 3.8.2 Curvilinear Streets
  • 3.9 Walnut Creek Highlands
  • 3.9.1 Traditional Grid Streets
  • 3.9.2 Curvilinear Streets
  • 3.10 Santiago Creek
  • 3.10.1 Traditional Grid Streets
  • 3.10.2 Curvilinear Streets
  • 3.11 Summary
  • 4 Planning
  • 4.1 Planning a New or Retrofitting an Existing Development
  • 4.2 Fatal Flaw Analysis
  • 4.3 Proposed Land Use
  • 4.4 Information Needed
  • 4.4.1 Topographic Information
  • 4.4.2 Survey and Boundary Data
  • 4.4.3 Soils and Geologic Data
  • 4.4.4 Hydrologic and Hydraulic Data
  • 4.4.5 Regulatory Data
  • 4.5 Other Basic Information Needs
  • 4.5.1 Political Considerations
  • 4.5.2 Social Considerations
  • 4.5.3 Financial Considerations
  • 4.5.4 Information on BMPs
  • 5 Types of Best Management Practices
  • 5.1 Land-Consuming Detention Basins
  • 5.2 Purposes of BMPs
  • 5.3 Types of BMPs
  • 5.3.1 EPA’s Definition
  • 5.3.2 Source Controls
  • 5.3.3 Treatment Controls
  • 5.3.4 BMP Descriptions
  • 5.4 Greenroofs
  • 5.4.1 Definition of a Greenroof
  • 5.4.2 Discussion
  • 5.5 Catch Basin Inserts
  • 5.5.1 Definition
  • 5.5.2 Variety of Manufactured Inserts
  • 5.6 Lawns
  • 5.6.1 Definition
  • 5.6.2 Discussion
  • 5.7 Vegetated Swales (Bioswales)
  • 5.7.1 Definition
  • 5.7.2 Description
  • 5.8 Infiltration Trenches
  • 5.8.1 Definition
  • 5.8.2 Advantages
  • 5.8.3 Design
  • 5.9 Rain Gardens (Rain Garden Network, 2008a)
  • 5.9.1 Definition
  • 5.9.2 Discussion
  • 5.9.3 Soil Types
  • 5.9.4 Benefits (Rain Garden Network, 2008b)
  • 5.9.5 Size and Installation
  • 5.10 Perforated Pipe Surrounded by Gravel
  • 5.10.1 Location and Construction
  • 5.11 Porous Pavements
  • 5.11.1 Definition
  • 5.11.2 Locations Where Used
  • 5.11.3 Layers
  • 5.11.4 Design Considerations
  • 5.11.5 Construction Considerations for Porous Asphalt Concrete
  • 5.12 Permeable Pavements
  • 5.12.1 Definition
  • 5.13 Sediment Basins
  • 5.13.1 Definition
  • 5.13.2 Discussion
  • 5.14 Extended Detention Basins
  • 5.14.1 Definition
  • 5.14.2 Discussion
  • 5.15 Dry Detention Basins
  • 5.15.1 Definition
  • 5.15.2 Discussion
  • 5.15.3 Forebays
  • 5.16 Wet Detention Basins
  • 5.16.1 Definition
  • 5.16.2 Difference from a Dry Detention Basin
  • 5.17 Buffer Zones
  • 5.17.1 Definition
  • 5.17.2 Discussion
  • 5.17.3 Widths
  • 5.17.4 Three-Zone Buffer System
  • 5.17.5 Maintenance Considerations
  • 5.17.6 Design Factors
  • 6 Precipitation
  • 6.1 Summary of First Five Chapters
  • 6.2 Introduction
  • 6.3 Rainfall Gaging Stations
  • 6.3.1 Standard Gage
  • 6.3.2 Weighing Bucket
  • 6.3.3 Tipping Bucket
  • 6.3.4 Alter Shield
  • 6.3.5 Volunteers
  • 6.3.6 Gage Locations
  • 6.3.7 Areal Extent and Rainfall Depths in a Storm
  • 6.4 Average Rainfall over an Area
  • 6.4.1 Arithmetic Mean Method
  • 6.4.2 Thiessen Method
  • 6.4.3 Isohyetal Method
  • 6.5 Rainfall Intensity
  • 6.6 Storm Duration
  • 6.7 Rainfall Depth
  • 6.8 Time Distribution of Rainfall
  • 6.9 Variables Needed for Development and Other Projects
  • 6.10 Madison, Wisconsin, as a Case Study
  • 7 Drainage Area Estimation
  • 7.1 Definition and Comments
  • 7.2 Steps in Watershed Delineation
  • 7.3 Available Computer Tools
  • 7.4 Topographic Maps
  • 7.5 Stream Network
  • 7.6 Watershed Delineation in Rural Areas
  • 7.6.1 Stream Network
  • 7.6.2 Watershed Boundary
  • 7.7 Watershed Delineation in Urban Areas
  • 7.7.1 Stream Network
  • 7.7.2 Watershed Boundary
  • 7.8 Subarea Boundaries
  • 7.9 Drainage Area Estimation
  • 7.10 Rural and Urban Areas
  • 7.11 Subtlety in Urban Areas
  • 7.12 Stream Network
  • 7.13 Detailed Drainage Area Delineation Summary
  • 7.13.1 Laying Out a Cross Section
  • 7.13.2 Field Observations
  • 7.13.3 Subareas
  • 7.14 A Final Thought
  • 8 Time of Concentration Estimation
  • 8.1 Definition
  • 8.2 Types of Equations
  • 8.3 Components of Tc
  • 8.4 Overland Flow or Sheet Flow
  • 8.4.1 Overland Flow Equations
  • 8.5 Shallow Concentrated Flow
  • 8.6 Channel Flow
  • 8.7 Estimation of Tc
  • 8.8 Example of Tc Calculations
  • 8.8.1 Example 8.1
  • 8.9 Detailed Tc Estimation
  • 8.10 What Should I Do?
  • 9 Sizing BMPs
  • 9.1 Decisions and Calculations Already Made
  • 9.2 Steps Needed to Complete the Design Process
  • 9.3 Allowable Headwater Depth
  • 9.4 Depth or Elevation versus Storage Relationship
  • 9.5 Inflow Hydrograph Methodology
  • 9.6 Depth or Elevation versus Outflow Relationship
  • 9.7 Routing Methodology
  • 10 Allowable Depths
  • 10.1 Definitions
  • 10.2 Roadways for New or Existing Detention Basins
  • 10.3 Berms for Many BMPs
  • 10.4 Site Characteristics
  • 10.5 Institutional Guidelines
  • 10.6 Land Use
  • 10.7 Return Periods
  • 10.8 Freeboard
  • 10.9 Caution
  • 11 Depth-Storage Relationships
  • 11.1 Definition
  • 11.2 Equations
  • 11.3 Examples
  • 11.3.1 Example 11.1
  • 11.3.2 Example 11.2
  • 11.3.3 Example 11.3
  • 11.3.4 Example 11.4
  • 11.3.5 Example 11.5
  • 11.4 Summary
  • 12 Inflow Hydrographs
  • 12.1 Introduction
  • 12.2 Hydrologic Cycle
  • 12.3 Hydrograph Methods
  • 12.4 Hydrograph Development
  • 12.4.1 Time of Concentration
  • 12.4.2 Runoff Curve Number
  • 12.4.3 Subareas
  • 12.4.4 Hydrograph Variables
  • 12.4.5 Hydrograph Ordinates
  • 12.5 Potential Attenuation of Inflow Hydrographs
  • 12.6 Example 12.1
  • 12.6.1 Times of Concentration
  • 12.6.2 Curve Number
  • 12.6.3 Hydrograph Variables
  • 12.6.4 Hydrograph Ordinates
  • 12.6.5 Attenuation of Inflow Hydrographs
  • 12.7 Example 12.2: Catfish Creek Tributary
  • 12.7.1 Drainage Areas
  • 12.7.2 Soil Types
  • 12.7.3 Antecedent Moisture Condition
  • 12.7.4 Land Uses
  • 12.7.5 Curve Numbers
  • 12.7.6 Times of Concentration and Travel Times
  • 12.7.7 Rainfall
  • 12.7.8 Inflow Hydrographs
  • 12.8 Nuances of the Method
  • 12.8.1 Rainfall
  • 12.8.2 Time of Concentration
  • 12.8.3 Runoff Curve Number
  • 12.8.4 Hydrograph Variables and Ordinates
  • 12.9 Summary
  • 13 Basic Hydraulics
  • 13.1 Introduction
  • 13.2 Conservation of Mass
  • 13.3 Total Energy
  • 13.4 Bernouilli’s Equation
  • 13.5 Specific Energy
  • 13.6 Froude Number
  • 13.7 Manning’s Equation
  • 13.8 Critical Depth
  • 13.9 Normal Depth
  • 13.10 Example 13.1
  • 13.10.1 Critical Depth
  • 13.10.2 Normal Depth
  • 13.10.3 Froude Number
  • 13.10.4 Is This a Hydraulically Mild or Hydraulically Steep Slope?
  • 13.11 Spreadsheets
  • 13.12 Conduit Slope
  • 13.13 Hydraulic Jump
  • 13.14 Friction Loss
  • 13.15 Summary
  • 14 Culvert Hydraulics
  • 14.1 Introduction
  • 14.2 Design Sequence
  • 14.3 Determine AHW
  • 14.3.1 Site Characteristics
  • 14.3.2 Institutional Guidelines
  • 14.4 Estimate Design Flow Rates
  • 14.5 Select Culvert Characteristics
  • 14.6 Location of Control Section
  • 14.6.1 Inlet Control Factors
  • 14.6.2 Outlet Control Factors
  • 14.7 Hydraulic Design
  • 14.8 Determine Critical and Normal Depths
  • 14.9 Inlet Control Charts
  • 14.10 Outlet Control Charts
  • 14.11 Performance Curves
  • 14.12 Outlet Transitions
  • 14.13 Pipe Protective Measures Affecting Culvert Hydraulics
  • 14.14 Summary
  • 15 Riser Structure Design
  • 15.1 Introduction
  • 15.2 A Caution
  • 15.3 Orifices
  • 15.3.1 Area and Gravity
  • 15.3.2 Coefficient of Discharge
  • 15.3.3 Heads on an Orifice
  • 15.4 Weirs
  • 15.4.1 Coefficient of Discharge
  • 15.4.2 Length
  • 15.4.3 Head
  • 15.5 Is a Weir Always a Weir Just as an Orifice Is Always an Orifice?
  • 15.6 Water Quality Outlets
  • 15.7 Examples
  • 15.7.1 Example 15.1: Short, Steep 24-Inch RCP with a 50-Degree V-Notch Weir
  • 15.7.2 Example 15.2: Rectangular Weir in a Riser
  • 15.7.3 Example 15.3: Vertical Perforated Riser
  • 15.7.4 Example 15.4: Riser with Multiple Outlets
  • 15.8 Summary
  • 16 Hydrograph Routing
  • 16.1 Introduction
  • 16.2 Routing Equation
  • 16.3 Routing Curve
  • 16.4 Routing Procedure
  • 16.5 Example 16.1
  • 16.5.1 Description
  • 16.5.2 Inflow Hydrographs
  • 16.5.3 Elevation Storage
  • 16.5.4 Elevation Outflow
  • 16.5.5 Routing Curve
  • 16.5.6 Routing the 2-Year Hydrograph through Catfish Creek Tributary
  • 16.5.7 Routing the 100-Year Hydrograph through Catfish Creek Tributary
  • 16.6 Cost and Summary
  • Appendices
  • A: Retrofit for Catfish Creek
  • A.1 Problem Statement
  • A.2 Permanent Pond Elevation
  • A.3 Top of Riser Elevation
  • A.4 Inflow Hydrographs
  • A.5 Revised Storage Volumes
  • A.6 Attenuation of Inflow Hydrographs
  • A.7 Elevation-Outflow Calculations for the 2-Year Orifice
  • A.8 Elevation-Outflow Calculations for the Top of Riser
  • A.9 Total Riser Inflows
  • A.10 Routing Curve
  • A.11 Hydrograph Routing for the Water Quality Storm Event
  • A.12 Hydrograph Routing for the 100-Year Storm Event
  • A.13 Cost
  • A.14 Summary
  • B: Greenroofs
  • B.1 Definition
  • B.2 Apartment Building
  • B.3 Summary
  • C: Residential Rain Gardens
  • C.1 Definition
  • C.2 Introduction
  • C.3 Description of Rain Garden Example
  • C.4 Revised Rain Garden Example
  • D: Vegetated Swale (Bioswale)
  • D.1 Definition
  • D.2 Apartment Complex
  • D.3 Alternative Outlet Structure
  • E: Parking Lots
  • E.1 Introduction
  • E.2 Original Problem Description
  • E.3 Modified Parking Lot Drainage
  • E.4 Porous Pavement Parking Lot
  • E.5 Summary of the Three Alternatives
  • F: Single-Family Neighborhood
  • F.1 Introduction
  • F.2 Traditional Subdivision
  • F.3 Curvilinear Streets
  • F.4 Questions Needing to Be Answered
  • F.5 Answers to These Questions
  • F.6 Runoff Curve Numbers
  • F.7 Times of Concentration
  • F.8 Peak Flow Rate Reductions
  • F.9 Hydrograph Development
  • F.10 Basin Elevation-Storage Calculations
  • F.11 Outflow Structure
  • F.12 Revised Elevation-Storage Calculations
  • F.13 Outlet Structure Hydraulics
  • F.14 Hydrograph Routing through Fig. F.4
  • F.15 Summary of Appendix F
  • G: Office Park
  • G.1 Original Problem Description
  • G.2 Revised Problem Description
  • G.3 Rooftops
  • G.4 Larger Rain Gardens
  • G.5 Smaller Rain Gardens
  • G.6 Interior Courtyard and Recreational Area
  • G.7 Summary
  • H: Industrial Site
  • H.1 Introduction
  • H.2 Roof
  • H.3 Production Space Roof
  • H.4 Offices Area Roof
  • H.5 Bioswale
  • H.6 Rain Garden
  • H.7 Porous Concrete Areas
  • H.8 Summary of the Industrial Site
  • I: Potential Source Control Best Management Practices
  • J: Manning’s Roughness Coefficients, n[sup(a)]
  • K: References
  • Index